Overview of

the conventional Gross-Neveu phase diagram and recent noteworthy reports (Review)

Sep. 20th, SSI2023 @Hiroshima University

Self-introduction and today's talk

Name: Sakura Itatani (板谷さくら)

Mar., 2023 : bachelor's degree (Hiroshima U

- supervisor
 Ken-Ichi Ishikawa san
- graduate thesis ⊂ today's talk

"A review of chiral phase transition in the 1+1 dimensional Gross-Neveu model"

Apr., 2023~: M1 in SOKENDAI (KEK)

Contents

I. The 1+1 dimensional Gross-Neveu model (~ 10 min.)

- Introduction
- Scheme for the GN phase diagram
- Calculation results of the phase diagram
- II. Phase structures in higher dimensional theories (~ 5 min.)
 - Probes for the phase structures

The theory of the strong interaction

The early universe Hadronic physics Neutron strars etc.

low density

- Nonperturbative
- Lattice QCD

finite density

X Lattice QCD (sign problem)

(1974)

- \rightarrow toy models
- Nambu-Jona-Lasinio (1961)
- Gross-Neveu

QCD v.s. the Gross-Neveu model

QCD Lagrangian

(Minkowski spacetime)

$$\mathcal{L}_{QCD} = \bar{\psi} (i\gamma^{\mu}D_{\mu} - M)\psi - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu a}$$
$$D_{\mu} = \partial_{\mu} - igA^{a}_{\mu}T^{a}$$

- SU(3) gauge symmetry
- Asymptotic freedom
- continuous chiral symmetry $(M \rightarrow 0)$

• 1+1 dim. Gross-Neveu model Ref.[2] (Euclidean spacetime)

$$\mathcal{L}_{GN} = \bar{\psi} (i\gamma_{\mu}\partial_{\mu})\psi + \frac{g^2}{2N_f} (\bar{\psi}\psi)^2$$

• *SU*(3) gauge symmetry • Asymptotic freedom • Z_2 symmetry $(Z_2: \psi \to i\gamma^5 \psi, \ \overline{\psi} \to i\overline{\psi}\gamma^5)$

We can draw the phase diagram of 1+1 dim. Gross-Neveu model by observing SSB of chiral Z_2 symmetry.

Scheme for the GN phase diagram Ref.[3]

1. order parameter

$$\langle \bar{\psi}\psi(x) \rangle = \frac{1}{Z} \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \ e^{-S_{GN}} \ \bar{\psi}\psi$$

 $S_{GN} = \int d^2x \ \mathcal{L}_{GN}$

 $\mathcal{L}_{GN} \text{ includes } (\bar{\psi}\psi)^2 \Longrightarrow \begin{array}{c} \text{not integrable} \\ \text{over } \mathcal{D}\bar{\psi}\mathcal{D}\psi \end{array}$

3. Ward-Takahashi identity

$$\left<\bar{\psi}\psi(x)\right>=i\frac{N_f}{g^2}\langle\sigma(x)\rangle$$

• translational invariance of PI measures $\mathcal{D}\sigma = \mathcal{D}(\sigma + a)$ new order parameter: $\langle \sigma(x) \rangle$ 2. introduce an auxiliary field σ

$$S_{\sigma} = \int d^{2}x \left(\mathcal{L}_{GN} + \frac{N_{f}}{2g^{2}} \sigma^{2} \right)$$
$$\rightarrow \int d^{2}x \left(\bar{\psi}i(\gamma_{\mu}\partial_{\mu} + \sigma)\psi + \frac{N_{f}}{2g^{2}} \sigma^{2} \right)$$

physics does not change: $(const.) \times Z$

4. effective action

$$S_{eff} = \frac{1}{2g^2} \int d^2 x \, \sigma^2 - \log \det \left(\gamma_\mu \partial_\mu + \sigma + \mu \gamma_0 \right)$$

$$\langle \sigma \rangle = \frac{1}{Z} \int \mathcal{D}\sigma \, e^{-N_f \, S_{eff}} \sigma$$
saddle point approx. \Rightarrow search for min S_{eff}

Result 1 : $\langle \sigma(x) \rangle = constant$

Spatially varying order parameter Ref.[3,4]

• allow σ to depend on \vec{x} :

 $\sigma \to \sigma(\vec{x})$ $S_{eff}[\sigma,\beta,\mu] \to S_{eff}[\sigma(\vec{x}),\beta,\mu]$

• self-consistency eq. (gap eq.)

$$\frac{\delta S_{eff}}{\delta \sigma(\vec{x})} = 0$$

assume

 $\sigma(x) = \sigma(x+a); \quad a = L/N$

Fourier expansion

$$\sigma(x) = \sum_{m \in \mathbb{Z}} \tilde{\sigma}_m e^{i2q_m x} ; \quad q_m = \pi m/a$$

solutions of the gap eq. at high densities: only $\tilde{\sigma}_{\pm 1} \neq 0$ at low densities: $\tilde{\sigma}_{+1}$ dominant $\sigma(\vec{x})$ low μ high X [Matplotlib] ignore higher-order Fourier coefficients $\Rightarrow \sigma(x) \propto \sin 2q_1 x$

Result 2 : $\langle \sigma(x) \rangle \neq constant$

Result 2 : $\langle \sigma(x) \rangle \neq constant$

Indirect detection of IP Ref.[5]

Stability analysis of HBP against inhomogeneous perturbation in d + 1-dim. GN model

effective action

$$S_{eff} = \frac{1}{2g^2} \int_0^\beta \mathrm{d}\tau \int \mathrm{d}^d x \, \sigma^2 - \log \det(\gamma_\mu \partial_\mu + \sigma + \mu \gamma_0)$$

add an inhomogeneous perturbation

$$\sigma(const.) \rightarrow \sigma(\vec{x}) = \overline{\sigma}(const.) + \delta\sigma(\vec{x}),$$

• (Taylor) expansion of S_{eff}

$$S_{eff} = S_{eff}^{(0)} + S_{eff}^{(1)} + S_{eff}^{(2)} + \cdots,$$

 S_{eff} instable $\Gamma^{(2)} < 0$ stable $\Gamma^{(2)} > 0$

$$D \to \overline{D} + \delta \sigma$$
$$D = \gamma_{\mu} \partial_{\mu} + \sigma + \mu \gamma_0$$

$$S_{eff}^{(2)} = \frac{\beta}{2} \int_{-\infty}^{\infty} \frac{dq}{2\pi} \underline{\Gamma}^{(2)} \,\delta\tilde{\sigma}(q)^2$$

"curvature" of S_{eff}

Results of stability analysis $(d = 1)_{\text{Ref.}[5]}$

curvature
$$\Gamma^{(2)}(\bar{\sigma}, \mu, T, q) \begin{cases} < 0 \Leftrightarrow \text{ instable HBP : imply IP} \\ > 0 \Leftrightarrow \text{ stable HBP or SP} \end{cases}$$

IP in higher dimensions (T = 0) Ref.[6]

curvature
$$\Gamma^{(2)}(\bar{\sigma}, \mu, T, q) \begin{cases} < 0 \Leftrightarrow \text{ instable HBP : imply IP} \\ > 0 \Leftrightarrow \text{ stable HBP or SP} \end{cases}$$

d < 2.0: IP exists at higher densities

 $d \ge 2.0$: IP does not exist

Summary and Prospect

- d + 1-dim. Gross-Neveu model (toy model of QCD)
- SSB of chiral Z₂ symmetry
- HBP for all spatial dimensions \boldsymbol{d}
- IP at high densities $(d \le 2)$

"Moat regime"?

 "quantum pion liquid (QπL) phase" in QCD?

phase structure of the GN model at T = 0

References

[1] W. Weise, *Nuclear Chiral Dynamics and Phases of QCD*, Progress in Particle and Nuclear Physics **67**, 299 (2012).

[2] D.J. Gross and A. Neveu, *Dynamical Symmetry Breaking in Asymptotically Free Field Theories*, Physical Review D **10**, 3235 (1974).

[3] J. Lenz et al. Inhomogeneous Phases in the Gross-Neveu Model in 1+1 Dimensions at Finite Number of Flavors, Physical Review D **101**, (2020).

[4] M. Thies and K. Urlichs, *Revised Phase Diagram of the Gross-Neveu Model*, Physical Review D **67**, (2003).

[5] A. Koenigstein *et al. Detecting Inhomogeneous Chiral Condensation from the Bosonic Two-Point Function in the (1 + 1)-Dimensional Gross–Neveu Model in the Mean-Field Approximation**, Journal of Physics A: Mathematical and Theoretical **55**, 375402 (2022).

[6] L. Pannullo, Inhomogeneous Condensation in the Gross-Neveu Model in Noninteger Spatial Dimensions $1 \le D < 3$, Physical Review D **108**, (2023).

[7] B. Cowan, Topics in Statistical Mechanics (Second Edition) (World Scientific, 2021).

Thank you for your attention.

Questions in English or Japanese are welcome!

Introducing the auxiliary σ

$$Z \cdot 1 = Z \cdot \int \mathcal{D}\sigma \exp\left[-\int d^2 x \frac{N_f}{2g^2} \sigma^2\right]$$

Gauss integration
with a normalization factor
$$= \int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}\sigma \exp\left[-\int d^2 x \left[\bar{\psi}i(\gamma_{\mu}\partial_{\mu} + \mu\gamma^0)\psi + \frac{g^2}{2N_f}(\bar{\psi}\psi)^2 + \frac{N_f}{2g^2}\sigma^2\right]\right]$$
$$= \int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}\sigma \exp\left[-\int d^2 x \left[\bar{\psi}i(\gamma_{\mu}\partial_{\mu} + \mu\gamma^0 + \sigma)\psi + \frac{N_f}{2g^2}\sigma^2\right]\right]$$
bilinear form w.r.t. $\bar{\psi}, \psi$
 $\sigma \to \sigma' = \sigma - \frac{ig^2}{N_f^2}\bar{\psi}\psi$

ψ

Result 1 : effective potential $U_{eff} = S_{eff}/\beta L$

minimum jumps: $\sigma = \pm 1 \rightarrow 0$ 1st order phase transition minimum gradually shifts: $\sigma = \pm 1 \rightarrow 0$ 2nd order phase transition

Mermin-Wagner theorem Ref.[5]

For theories in d dimensions,

• $d \ge 3$

Both continuous and discrete symmetries can be broken spontaneously.

• d = 2

Only discrete symmetries can be broken spontaneously. ex.) the 2d Ising model

• d = 1

Any symmetries cannot be broken spontaneously.

Result 1 : $\langle \sigma(x) \rangle = constant$

Mermin-Wagner theorem
 Ref. [7]
 in 2D theories:
 SSB of discrete sym.
 SSB of continuous sym.

 Z_2 symmetry: discrete $\psi \rightarrow i\gamma^5 \psi, \quad \overline{\psi} \rightarrow i\overline{\psi}\gamma^5$ \downarrow

phase transition is allowed

[Python]

Result 2 : $\langle \sigma(x) \rangle \neq constant$

d + 1-dim. Gross-Neveu model Ref.[6]

d + 1 -dim. Gross-Neveu effective action (Euclidean spacetime) $S_{eff} = \frac{1}{2g^2} \int_0^\beta d\tau \int d^d x \, \sigma^2 - \log \det(\gamma_\mu \partial_\mu + \sigma + \mu \gamma_0) \qquad \text{HBP} - \text{SP transition} \\ (T, \mu) = (0, \mu_C(d)) \\ \overline{U}_{eff} \\ 0.012 \\ 0.010 \\ 0.008 \\$

renormalization + assume σ: *x*-independent

renormalized effective action (T = 0) $\bar{S}_{eff} \propto \bar{U}_{eff}[\sigma, \mu, d]$

Existence of the moat regime (T = 0) Ref.[6]

 $Z = \frac{1}{2} \frac{d^2 \Gamma^{(2)}}{dq^2} \begin{cases} < 0 \Leftrightarrow \text{moat regime} \\ > 0 \Leftrightarrow \text{not moat regime} \end{cases}$

