チャーム・ボトムの
 エキゾチックハドロン物理の最近の発展

安井繁宏
\in 佐々ホグループ \subset WPI－SKCM ${ }^{2} \subset$ 広島大学

内容

1．イントロダクション

1.1 ハドロンの基本的性質
1.2 なぜ重い八ドロンを研究するのか？

2．重いクォークのスピン対称性と有効理論
2.1 スピン対称性と八ドロンスペクトロスコピー
2.2 重いクォークの有効理論
2.3 重い八ドロンの有効理論

3．重いエキゾチックハドロン－ハドロン相互作用の観点から－
3.1 なぜエキゾチックハドロンが面白いのか？
3.2 チャームメソン：X，Y，Z
3.3 ボトムメソン：Z_{b}
3.4 チャームペンタクォーク： $\mathrm{P}_{\mathrm{c}}, \mathrm{P}_{\mathrm{cs}}$
3.5 ダブルチャームメソン：$T_{c c}$
3.6 フルチャームメソン： $\mathrm{X}_{\text {cc }}$
3.7 反応論一重イオン衝突によるエキゾチックハドロン生成一

内容

1．イントロダクション

1.1 ハドロンの基本的性質
1.2 なぜ重い八ドロンを研究するのか？

2．重いクォークのスピン対称性と有効理論
2.1 スピン対称性とハドロンスペクトロスコピー
2.2 重いクォークの有效理論
2.3 重い八ドロンの有効理論

3．重いエキゾチックハドロン－ハドロン相互作用の観点から－
3.1 なぜエキゾチックハドロンが面白いのか？
3.2 チャームメソン：X，Y，Z
3.3 ボトムメソン：Z_{b}
3.4 チャームペンタクオーク：$P_{c} P_{c s}$
3.5 ダブルチャームメソン：$T_{c c}$
3.6 フルチャームメソン： $\mathrm{X}_{\text {cc }}$
3.7 反応論一重イオン衝突によるエキゾチックハドロン生成一
3. Heavy exotic hadrons -X, Y, Z hadrons-

Charm/bottom exotic hadrons

3. Heavy exotic hadrons -X, Y, Z hadrons-
3. Heavy exotic hadrons -X, Y, Z hadrons-

Exotic Hadrons

Compact multiquark

Hadronic molecule
gluonic excitation modes
"string excitation"

$$
\Sigma, \Pi, \Delta, \Phi, \ldots
$$

$$
(S, P, D, F, \ldots)
$$

Kinematic effect
3. Heavy exotic hadrons -X, Y, Z hadrons-

Charm
 X(3872) Tetraquark Bottom Tetraquark
 X(5568)
 $$
\begin{aligned} & Y_{b}(10860) \\ & Z_{b}(10610)^{+} \\ & Z_{b}(10650)^{+} \end{aligned}
$$

 $Z_{b}(10610)^{+}$

 $Z_{b}(10610)^{+}$ $Z_{b}(10650)^{+}$

 $Z_{b}(10650)^{+}$}3. Heavy exotic hadrons -X, Y, Z hadrons-

4. Heavy exotic hadrons -X, Y, Z hadrons-

X(3872)
3. Heavy exotic hadrons -X, Y, Z hadronsX(3872)
S. K. Choi et al. [Belle Collaboration], Phys. Rev. Lett. 91, 262001 (2003)

> 2600 citations

3. Heavy exotic hadrons -X, Y, Z hadronsX(3872)

$\mathrm{X}(3872) \rightarrow \mathrm{J} / \Psi \pi^{+} \pi^{-}$seen in different reactions

$p \bar{p}$

$$
\mathrm{m}\left(\mathrm{~J} / \psi \pi^{+} \pi\right)[\mathrm{MeV}]
$$

a) Choi, S.-K., et al.: Phys. Rev. Lett. 91, 262001 (2003)
b) Acosta, D., et al.: Phys. Rev. Lett. 93, 072001 (2004)
c) Chatrchyan, S., et al.: JHEP 04, 154 (2013)

Cf. Amsler, "The Quark Structures of Hadrons", Springer (2018)
3. Heavy exotic hadrons -X, Y, Z hadronsX(3872)
Mass of $\mathrm{X}(3872)$ is very close to $\mathrm{DD}^{* b a r}$ threshold.

3. Heavy exotic hadrons -X, Y, Z hadronsX(3872)

Mass of $\mathrm{X}(3872)$ is very close to $\mathrm{DD}^{* b a r}$ threshold.

3. Heavy exotic hadrons -X, Y, Z hadronsX(3872)

What is quantum number ($\left.\mathrm{J}^{\mathrm{PC}}\right)$?

(1) photon decay

$$
X(3872) \rightarrow J / \psi \gamma
$$

No signature for $\mathrm{C}=-1: \mathrm{J} / \psi \eta$ (PTEP2014,
V. Bhardwaj et al. [Belle], Phys. Rev. Lett. 107, 091803 (2011) (Cf. B. Aubert et al. [BaBar], Phys. Rev. Lett. 102, 132001 (2009)) $043 \mathrm{CO1}$ (2014)) and $\mathrm{X}_{\mathrm{cl}}(2 \mathrm{P})\left(\mathrm{PRL111,032001}\right.$ (2013)) $\quad \mathrm{M}_{\mathrm{J} / \psi \gamma}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$
(2) angular distribution of decay products

$$
X(3872) \rightarrow J / \psi \pi^{+} \pi^{-} \quad \begin{aligned}
& \text { A. Abulencia et al. [CDF], Phys. Rev. Lett. 98, } 132002 \text { (2007) } \\
& \begin{array}{l}
\text { B. S.-K. Choi et al. [Belle], Phys. Rev. D 84, } 052004 \text { (2011) } \\
\text { R. Aaij et al. [LHCb], Phys. Rev. Lett. 110, } 222001 \text { (2013) }
\end{array}
\end{aligned}
$$

$X(3872) \longrightarrow J / \psi \pi^{+} \pi^{-} \pi^{0}$ P. del Amo Sanchez et al. [BaBar], Phys. Rev. D 82, 011101 (2010)

$$
X(3872) \mathrm{JPC}^{\mathrm{P}}=1^{++} \text {or } 2^{-+} \Rightarrow \mathrm{JPC}=1^{++}
$$

3. Heavy exotic hadrons -X, Y, Z hadronsX(3872)
 Tetrouork interpretation $\begin{aligned} & \text { L. Maiani, F. Piccinini, A. D. Polosa } \\ & \text { and V. Riquer, Phys. Rev. D 71, } \\ & 014028(2005)\end{aligned}$

(1) Isospin symmetry breaking \rightarrow particle eigenstates (isospin sym. discarded)

$$
X_{u}=[c u][\bar{c} \bar{u}] \quad X_{d}=[c d][\bar{c} d]
$$

If isospin eigenstate exists... $f_{c \bar{c}}=\left(X_{u}+X_{d}\right) / \sqrt{2} \quad a_{c \bar{c}}=\left(X_{u}-X_{d}\right) / \sqrt{2}$

$$
l=0 \quad l=1
$$

(2) Mixing of $u u^{b a r}$ and dd ${ }^{\text {bar }}$ via gluon exchange (interaction strength δ)

$$
\text { Hamiltonian: } \begin{array}{ccc}
X_{u} & X_{d} & q \\
X_{u}\left(\begin{array}{cc}
2 m_{u}+\delta & \delta \\
\delta & 2 m_{d}+\delta
\end{array}\right) \quad \bar{q} \rightarrow \text { gluon } \bar{q}^{\prime}
\end{array}
$$

δ : flavor-blind coupling (same for $u \bar{u}$ and $d \bar{d}$)

$$
X_{\text {low }}=\cos \theta X_{u}+\sin \theta X_{d} \quad X_{\text {high }}=-\sin \theta X_{u}+\cos \theta X_{d}
$$

$$
\text { mass difference: } \begin{aligned}
M\left(X_{h}\right)-M\left(X_{l}\right) & =2\left(m_{d}-m_{u}\right) / \cos (2 \theta)= \\
& =(7 \pm 2) / \cos (2 \theta) \mathrm{MeV}
\end{aligned}
$$

3. Heavy exotic hadrons - X, Y, Z hadronsX(3872)

Tetrquark interpretation

Searching two states in B decays (by experiments)
mass difference

> B. Aubert et al. [BaBar], Phys. Rev. D 77,111101 (2008)
> $\left(2.7 \pm 1.6\right.$ (stat) ± 0.4 (syst)) MeV/c c^{2}
> s.-K. Choi et al. [Belle], Phys. Rev. D 84,052004 (2011) $(-0.71 \pm 0.96$ (stat) $\pm 0.19($ syst $)) \mathrm{MeV} / c^{2}$

No mass difference \rightarrow Inconsistent with tetraquark...

Charged state?
$X(3872) \rightarrow J / \psi \pi^{ \pm} \pi^{0}(?) \quad$ No signature in experiments.
S.-K. Choi et al. [Belle], Phys. Rev. D 84, 052004 (2011)
3. Heavy exotic hadrons -X, Y, Z hadronsX(3872)
Dominance of $\mathrm{D}^{0} \mathrm{D}^{* 0 b a r}$ component?

$$
B \rightarrow \underset{\times(3872) ?}{ } \frac{D^{0} \bar{D}^{* 0} K}{}
$$

Excess at D00*0bar threshold was found.

$$
\mathcal{B}\left(X(3872) \rightarrow D^{0} \bar{D}^{* 0}\right) \approx \underline{10 \times \mathcal{B}}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)
$$

3. Heavy exotic hadrons -X, Y, Z hadronsX(3872)
$\mathrm{D}^{0} \mathrm{D}^{* 0 b a r}$ molecule interpretation

$$
\begin{aligned}
& \mathrm{D}^{+} \mathrm{D}^{*-}\left(\mathrm{D}^{-D^{*+}}\right) \text { 3879.84士0.14 MeV } \\
& \text { X(3872) } 3871.65 \pm 0.06 \mathrm{MeV} \underset{ }{\substack{\text { isospin } \\
\text { symmetry } \\
\text { breaking }}} \\
& \mathrm{D}^{0} \mathrm{D}^{* 0 \text { bar }} \overline{3871.68 \pm 0.10 \mathrm{MeV}}
\end{aligned}
$$

The energy from threshold is less than 0.1 MeV...

${ }^{208 P b}$

Such fragile particle must be difficult to be produced in ppar collisions...
3. Heavy exotic hadrons -X, Y, Z hadronsX(3872)

Likely NOT a simple $D^{0} D^{* 0 b a r}$ molecule... What is this?

3. Heavy exotic hadrons -X, Y, Z hadronsX(3872)

Admixture of $D^{0} D^{* 0 b a r}$ molecule and $x_{c 1}(2 P)$

Model setting (simple!) E.J. Eichiten et al., PRD73,01 401 4(2006); A. M. Badalian et al.. PRD85,0311 03 (2012) M. Takizawa and S. Takeuchi, Prog. Theor. Exp. Phys. 2013, 093D01 (2013)
(1) Wave function as a superposition

$$
|X\rangle=c_{1}|\bar{c} c\rangle+c_{2}\left|D^{0} \bar{D}^{* 0}\right\rangle+c_{3}\left|D^{ \pm} \bar{D}^{* \mp}\right\rangle
$$

(2) Coupling between $D^{0} D^{* 0 b a r}\left(D^{+} D^{*-}\right)$ and $X_{c 1}(2 P): D^{* b a r} \rightleftarrows X_{c 1}(2 P)$

$$
\left\langle D^{0} \bar{D}^{* 0}(\boldsymbol{q})\right| V|c \bar{c}\rangle=\left\langle D^{+} D^{*-}(\boldsymbol{q})\right| V|c \bar{c}\rangle=\frac{g}{\sqrt{\Lambda}}\left(\frac{\Lambda^{2}}{q^{2}+\Lambda^{2}}\right)
$$

(3) Hamiltonian (3×3 matrix)

$$
H=\left(\begin{array}{ccc}
m_{\bar{c} c} & V & V \\
V & m_{D^{0} \bar{D}^{* 0}}+K & 0 \\
V & 0 & m_{D^{ \pm} \bar{D}^{* \mp}}+K
\end{array}\right)
$$

$\mathrm{g}:$ coupling constant
\wedge : momentum cutoff

Parameter set: $0.3 \mathrm{GeV} \leq \wedge \leq 1.0 \mathrm{GeV}$ (g is fixed to reproduce 3872 MeV mass.)

$\Lambda[\mathrm{GeV}]$	0.3	0.5	1.0
g	0.05435	0.05110	0.04835

3. Heavy exotic hadrons -X, Y, Z hadronsX(3872)

Admixture of $D^{0} D^{* 0 b a r}$ molecule and $X_{c l}(2 P)$

Result

(1) Components in wave function
M. Takizawa and S. Takeuchi, Prog. Theor. Exp. Phys.

$$
\begin{aligned}
& |X\rangle=c_{1}|\bar{c} c\rangle+c_{2} \\
& \left|D^{0} \bar{D}^{* 0}\right\rangle+c_{3}\left|D^{ \pm} \bar{D}^{* \mp}\right\rangle \\
& \begin{array}{cccc}
\hline \Lambda[\mathrm{GeV}] & c_{1} & c_{2} & c_{3} \\
\hline 0.3 & 0.227 & -0.947 & -0.228 \\
0.5 & 0.293 & -0.920 & -0.259 \\
1.0 & 0.404 & -0.871 & -0.280
\end{array}
\end{aligned}
$$

$c_{1,2,3}$ do not depend strongly in cutoff \wedge.

"shallow state"
3. Heavy exotic hadrons -X, Y, Z hadronsX(3872)

Admixture of $D^{0} D^{* 0 b a r}$ molecule and $X_{c 1}(2 P)$

Result

(2) Spectrum

Where is this $X_{c 1}(2 P)$?

$$
|X\rangle=c_{1}|\bar{c} c\rangle+c_{2}\left|D^{0} \bar{D}^{* 0}\right\rangle+c_{3}\left|D^{ \pm} \bar{D}^{* \mp}\right\rangle
$$

Spectral function of $X(3872)$

$$
S(E)=\frac{-1}{\pi} \operatorname{Im}\langle c \bar{c}| G(E)|c \bar{c}\rangle \quad G(E)=\frac{1}{E-\hat{H}+i \varepsilon}
$$

" $X_{c 1}(2 P)$ " exists as a broad peak.

This explains naturally no confirmation of $\mathrm{X}_{\mathrm{cl}}(2 \mathrm{P})$ in experiments.

3. Heavy exotic hadrons X(3872) Radiative decay Branching ratios $\left(R_{Y}\right): \quad X(3872) \rightarrow \psi(2 S) Y, J / \Psi Y$

$$
\begin{aligned}
& \frac{\mathcal{B}(X(3872) \rightarrow \psi(2 S) \gamma)}{\mathcal{B}(X(3872) \rightarrow J / \psi \gamma)}=3.4 \pm 1.4 \\
& \frac{\mathcal{B}(X(3872) \rightarrow \psi(2 S) \gamma)}{\mathcal{B}(X(3872) \rightarrow J / \psi \gamma)}<2.1 \text { at } 90 \% \text { C.L. }
\end{aligned}
$$

B. Aubert et al. [BaBar],

$$
\text { Phys. Rev. Lett. 102, } 132001 \text { (2009) }
$$

V. Bhardwaj et al. [Belle],

Phys. Rev. Lett. 107, 091803 (2011)

$$
\frac{\mathcal{B}(X(3872) \rightarrow \psi(2 S) \gamma)}{\mathcal{B}(X(3872) \rightarrow J / \psi \gamma)}=2.46 \pm 0.64(\text { stat }) \pm 0.29(\text { syst }) \underset{\text { R. Aaij et al. [LHCb], Nucl. Phys. } 665(2014)}{\text { R. }}
$$

Those suggest

$$
B(X(3872) \rightarrow \psi(2 S) Y) \approx 3 \times B(X(3872) \rightarrow J / \psi Y)
$$

model	$g_{c \bar{c}(1 P)-D \bar{D}}$	$Z_{c \bar{c}(1 P)}^{2}$	$Z_{c \bar{c}(2 P)}^{2}$	$\Gamma(X \rightarrow J / \psi)$	$\Gamma(X \rightarrow \psi(2 S))$	R_{Y}	R_{Y} (spectrum)
A00	0	0	0.036	0.6	2.1	3,	3.4
A01	$\frac{1}{10} g_{\bar{c}(2 P)-D \bar{D}}$	0.001	0.036	1.1	2.0	1.8	1.9
A10	$-g_{c \bar{c}(2 P)-D \bar{D}}$	0.011	0.060	6.1	6.2	1.0	1.1

3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
\begin{gathered}
\Psi(4230) \\
\text { aka } Y(4260)
\end{gathered}
$$

3. Heavy exotic hadrons -X, Y, Z hadrons$\psi(4230)$ aka $Y(4260)$
mystery of decay patterns

3. Heavy exotic hadrons -X, Y, Z hadrons$\psi(4230)$ aka $Y(4260)$
mystery of decay patterns
$Y(4260)$ can decay to $D D^{b a r}$, but...
There is no decay from $Y(4260)$ to $D^{b a r}$.

From Olsen et al. Rev. Mod. Phys. 90, 015003 (2018)
Original figure: BESS, Phys. Rev. Lett. 88, 101802 (2002)

3. Heavy exotic hadrons -X, Y, Z hadrons$\psi(4230)$ aka $Y(4260)$

 Hybrid state???F. E. Close and P. R. Page, 2005, Phys. Lett. B 628, 215 (2005)
E. Kou and O. Pene, 2005, Phys. Lett. B 631, 164 (2005)
S.-L. Zhu, 2005, Phys. Lett. B 625, 212 (2005)

c̄̄g hybrid

Gluons appear as dynamical d.o.f.
Candidate observed in lattice calculations:
Liu, L., G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, P. Vilaseca, J. J. Dudek, R. G.
Edwards, B. Joo, and D. G. Richards (Hadron Spectrum), 2012, J. High Energy Phys. 07126

3. Heavy exotic hadrons -X, Y, Z hadrons$\psi(4230)$ aka $Y(4260)$

Hybrid state???
QQbar potential J. Kuti, Nucl. Phys. B Proc. Suppl. 73, 72 (1999)

3. Heavy exotic hadrons -X, Y, Z hadrons$\psi(4230)$ aka $Y(4260)$

Hybrid state???

3. Heavy exotic hadrons -X, Y, Z hadrons$\psi(4230)$ aka $Y(4260)$

Hybrid state???
K.J. Juge, J. Kuti, C.J. Morningstar, Phys. Rev. Lett. 82, 4400 (1999)

3. Heavy exotic hadrons -X, Y, Z hadrons$\psi(4230)$ aka $Y(4260)$

Hybrid state???

M. Berwein, N. Brambilla, J.T. Castela, A. Vairo, Phys. Rev. D92, 114019 (2015)

See for early applications to $Y(4260)$:
F. E. Close and P. R. Page, Phys. Lett. B 628, 215 (2005)
E. Kou and O. Pene, Phys. Lett. B 631, 164 (2005)

Cf. review: C. A. Meyer, E. S. Swanson, Prog. Part. Nucl. Phys. 82, 21 (2015)

3. Heavy exotic hadrons -X, Y, Z hadrons$\psi(4230)$ aka $Y(4260)$

No single Breit-Wigner shape (reanalysis by higher statistics)

$$
\begin{aligned}
& M_{1}=4222 \pm 4 \mathrm{MeV}, \quad \Gamma_{1}=44 \pm 5 \mathrm{MeV}, \\
& M_{2}=4320 \pm 13 \mathrm{MeV}, \frac{\Gamma_{2}=101_{-22}^{+27} \mathrm{MeV},}{} \mathrm{Y}(4360) \text { " }
\end{aligned}
$$

3. Heavy exotic hadrons -X, Y, Z hadrons$\psi(4230)$ aka $Y(4260)$
Lattice QCD ($m_{\pi} \approx 400 \mathrm{MeV}$) Liv et al. JHEPO7(2012) 125

Mass of the hybrid (4285) seems consistent with $\psi(4230)$ aka $\psi(4260)$!
\rightarrow We should explore the other hybrids including JPC exotics!!

Lattice computation of light meson spectrum $@_{\pi}=392 \mathrm{MeV}$

J.J. Dudek, R.G. Edwards, P. Guo, C.E. Thomas, Phys. Rev. D 88, 094505 (2013)

Cf. M.R. Stephaerd, J.J. Dudeck, R E. Mirchell, Nat. Phys. 534, 487 (2016)
3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{c}(4430)^{+}
$$

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{c}(4430)^{+}$
 Charged charmonium
 First observation of genuinely "four-quark"

Note: ccar should be contained, because the final state of $Z_{c}(4430)$ includes a charmonum.
3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{c}(4430)^{+}
$$

Charged charmonium

$$
B \rightarrow \psi(2 S) \pi^{+} K
$$

3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{c}(4430)^{+}
$$

Does this peak really indicate a resonance?

Argand plot $\left(\Psi^{\prime} \Pi^{+}\right) \quad \begin{aligned} & \text { R. Aaij et al. [LHCb], } \\ & \text { Phys. Rev. Lett. 112, } 222002 \text { (2014) }\end{aligned}$

Yes, this is consistent to be a resonance!!
(Necessary condition for being a resonance: If resonance, then circle in Argand plot.)
3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{c}(4430)^{+}$
Does this peal really indicate a resonance? Argand plot (review) $\begin{gathered}\text { Slide by Klaus Peters (GSI) } \\ \text { Charm } 2006\end{gathered}$

Introducing Partial Waves

- Schrödinger`s Equation

$$
-\frac{\hbar}{2 \mu} \nabla^{2} \Psi(\vec{r})+V(\vec{r}) \Psi(\vec{r})=E \Psi(\vec{r}) \quad V(\vec{r})=0
$$

$$
\vec{k}=\frac{\vec{p}}{\hbar}=\mu \frac{\vec{v}}{\hbar} \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

$$
\Psi_{i}(r, \vartheta, \varphi)=e^{\imath k z}
$$

$$
|i\rangle=\Psi_{i}=\sum_{l=0}^{\infty} U_{l}(r) P_{l}(\cos \vartheta)
$$

Angular Amplitude
$\Psi_{S}=\Psi_{f}-\Psi_{i}=\frac{1}{k} \sum_{l=0}^{\infty}(2 l+1) \frac{\eta_{l} e^{2 \imath \delta_{l}}-1}{2 \imath} P_{l}(\cos \vartheta) \frac{e^{\imath k r}}{r}$: scattering wave

$$
T_{l}=\frac{\eta_{l} e^{2 \imath \delta_{l}}-1}{2 \imath}
$$

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{c}(4430)^{+}$
Does this peal really indicate a resonance? Argand plot (review) $\begin{gathered}\text { Slide by Klaus Peters (GSI) } \\ \text { Charm } 2006\end{gathered}$

3. Heavy exotic hadrons -X, Y, Z hadrons-

Other charged states: $Z_{c}(4200)^{+}, Z_{c}(4050)^{+}, Z_{c}(4250)^{+}$

LHCb, Phys. Rev. Lett. 112, 222002 (2014)

Belle, Phys. Rev. D 78, 072004 (2008)

Argand's plot for Zc(4200)
Belle, Phys. Rev. D 90, 112009 (2014)
Cf. Olsen et al. Rev. Mod. Phys. 90, 015003 (2018)
What exactly are they?
3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{c}(3900)^{+}
$$

3. Heavy exotic hadrons -X, Y, Z hadrons-
$Z_{c}(3900)^{+}$
Charged charmonium
Z. Q. Liv et al. [Belle],

Phys. Rev. Lett. 110, 252002 (2013) Cf. M. Ablikim et al. [BESSIII],
Phys. Rev. Lett. 110, 252001 (2013)

Charge neutral
$Y(4260) \rightarrow J / \psi \pi^{+} \pi^{-}$

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{c}(3900)^{+}$
Charged charmonium
BESIII, Phys. Rev. Lett. 112, 022001 (2014)

Neutral partner: $Z_{c}(3900)^{0}$
BESIII, Phys. Rev. Lett. 115, 112003 (2015)

$$
e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} J / \psi
$$

BESIII, Phys. Rev. Lett. 115, 112002 (2015)
$e^{+} e^{-} \rightarrow \pi^{0}\left(D \bar{D}^{*}\right)^{0}$

$$
\leftrightarrow D^{+} \bar{D}^{*-} D^{0} \bar{D}^{* 0}
$$

Cf. Olsen et al. Rev. Mod. Phys. 90, 015003 (2018) 50

3. Heavy exotic hadrons -X, Y, Z hadronsrelated state: $Z_{c}(4020)^{+}$
 Charged charmonium

BESIII, PRLI 13, 212002 (2014)

BESIII, PRL1 12, 132001 (2014)

Bottom version

$$
\left.\begin{array}{l}
Z_{c}(3900)^{+} \\
Z_{c}(4020)^{+}
\end{array}\right\} \underset{\text { (see next page.) }}{\text { paired states } ? ~}
$$

$\left\{\begin{array}{l}Z_{b}(10610)^{+} \\ Z_{b}(10650)^{+}\end{array}\right.$
We will discuss Z_{b} 's in detail later.
3. Heavy exotic hadrons -X, Y, Z hadrons-

Brief summary of charged Z_{c} 's

Their masses are close to the $D^{(*)} \bar{D}^{*}$ thresholds. Does this suggest the hadronic molecules?

$$
0^{-+} \quad 1^{--} \quad 1^{+(-)} \quad 0^{++} \quad 1^{++} \quad 2^{++} \quad 2^{--} \& \text { other }
$$

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{c}(3900)^{+}$ Lattice QCD
S. Prelovsek and L. Leskovec, Phys. Lett. B 727, 172 (2013)
S. Prelovsek, C. B. Lang, L. Leskovec, and D. Mohler, Phys. Rev. D 91, 014504 (2015)
Y. Chen et al., Phys. Rev. D 89, 094506 (2014)
Y. Ikeda et al., Phys. Rev. Lett. 117, 242001 (2016)

4. Heavy exotic hadrons -X, Y, Z hadrons-
S. Prelovsek, C. B. Lang, L. Leskovec, and D. Mohler, Phys. Rev. D 91, 014504 (2015)
Y. Chen et al., Phys. Rev. D 89, 094506 (2014)
Y. Ikeda et al., Phys. Rev. Lett. 117, 242001 (2016)
"HAL QCD" method
N. Ishii, S. Aoki, and T. Hatsuda, Phys. Rev. Lett. 99, 022001 (2007)
S. Aoki, T. Hatsuda, and N. Ishii, Prog. Theor. Phys. 123, 89 (2010)
(1) Calculate Nambu-Bethe-Salpeter wave function $\psi_{n}^{\alpha}(\vec{r})$ (correlation function)

$$
\begin{aligned}
& C^{\alpha \beta}(\vec{r}, t) \equiv \sum_{\vec{x}}\langle 0| \phi_{1}^{\alpha}(\vec{x}+\vec{r}, t) \phi_{2}^{\alpha}(\vec{x}, t) \overline{\mathcal{J}}^{\beta}|0\rangle / \sqrt{Z_{1}^{\alpha} Z_{2}^{\alpha}} \\
& \alpha=\left(\pi J / \psi, \rho \eta_{c}, \bar{D} D^{*}\right) \text { hadron basis } \\
& \longrightarrow C^{\alpha \beta}(\vec{r}, t)=\sum_{n} \psi_{n}^{\alpha}(\vec{r}) A_{n}^{\beta} e^{-W_{n} t}
\end{aligned}
$$

(2) Schrödinger equation (inverse problem)

$$
R^{\alpha \beta}(\vec{r}, t) \equiv C^{\alpha \beta}(\vec{r}, t) e^{\left(m_{1}^{\alpha}+m_{2}^{\alpha}\right) t}
$$

$$
\left(-\frac{\partial}{\partial t}-H_{0}^{\alpha}\right) R^{\alpha \beta}(\vec{r}, t)=\sum_{\gamma} \Delta^{\alpha \gamma} \int{\overrightarrow{i^{\prime}}}^{\prime} U^{\alpha \gamma}\left(\vec{r}, \overrightarrow{r^{\prime}}\right) h^{\gamma \beta}\left(\overrightarrow{r^{\prime}}, t\right)
$$

$$
H_{0}^{\alpha}=-\nabla^{2} / 2 \mu^{\alpha} \quad \mu^{\alpha}=m_{1}^{\alpha} m_{2}^{\alpha} /\left(m_{1}^{\alpha}+m_{2}^{\alpha}\right) \quad U^{\alpha \beta}\left(\vec{r}, \overrightarrow{r^{\prime}}\right)=V^{\alpha \beta}(\vec{r}) \delta\left(\vec{r}-\overrightarrow{r^{\prime}}\right)+O\left(\nabla^{2}\right)
$$

$$
\Delta^{\alpha \gamma}=e^{\left(m_{1}^{\alpha}+m_{2}^{\alpha}\right) t} / e^{\left(m_{1}^{\gamma}+m_{2}^{\gamma}\right) t} \quad \text { inter-hadron potential }
$$

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{c}(3900)^{+}$ Lattice QCD

Y. Ikeda et al., Phys. Rev. Lett. 117, 242001 (2016)

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{c}(3900)^{+}$ Lattice QCD
Y. Ikeda et al., Phys. Rev. Lett. 117, 242001 (2016)

3. Heavy exotic hadrons -X, Y, Z hadrons-

$Y_{b}(10860)$

3. Heavy exotic hadrons -X, Y, Z hadrons$Y_{b}(10860)$
Analogue of $Y(4260)$?
$\frac{4416}{\text { C) }} \Psi(4 \mathrm{~S})^{1319}$

$\frac{10355}{Y}(3 S) 895$
4. Above $B B^{\text {bar }}$ threshold?
5. Between $Y(n S)$ and $Y((n+1) S)$?
$-\quad$ (102S)
Charmonium

Bottomonium

$$
\frac{s^{\frac{s p}{}} \operatorname{ccosix}}{} J / \psi(15)^{0}
$$

$$
\frac{9460}{b b^{\circ r}} \quad Y(1 S)
$$

3. Heavy exotic hadrons -X, Y, Z hadrons$Y_{b}(10860)$
Analogue of $Y(4260)$?

4. Heavy exotic hadrons -X, Y, Z hadrons-

Analogue of $Y(4260)$?

$$
e^{+} e^{-} \rightarrow \mathrm{Y}(n S) \pi^{+} \pi^{-} \quad(n=1,2,3) \quad \sigma^{0}: \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}
$$

$\mathrm{Y}(1 S) \pi^{+} \pi^{-} \sigma_{\text {peak }}(\mathrm{pb})$	$2.788_{-0.34}^{+0.42} \pm 0.23$	Enhanced There should be some other components except for bbbar (hybrid, or mixture with bbbar?) Note: $Y_{b}(10860)$ decays to BBbar in contrast to
$\mathrm{Y}(2 S) \pi^{+} \pi^{-} \sigma_{\text {peak }}(\mathrm{pb})$	$4.82_{-0.62}^{+0.77} \pm 0.66$	
$\underline{\Upsilon(3 S) \pi^{+} \pi^{-} \sigma_{\text {peak }}(\mathrm{pb})}$	$1.711_{-0.31}^{+0.35} \pm 0.24$	
$\mu\left(\mathrm{MeV} / c^{2}\right)$	$10888.4{ }_{-2.6}^{+2.7} \pm 1.2$	
$\Gamma\left(\mathrm{MeV} / c^{2}\right)$	$30.7{ }_{-7.0}^{+8.3} \pm 3.1$	Y(4260). 63

3. Heavy exotic hadrons -X, Y, Z hadrons$h_{b}(2 P)$
by-product...
I. Adachi et al. [Belle],

Phys. Rev. Lett. 108, 032001 (2012)

(accidental) first discovery of $h_{b}(2 P)$
3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
\begin{aligned}
& Z_{b}(10610)^{+} \\
& Z_{b}(10650)^{+}
\end{aligned}
$$

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$

 Charged bottomonium
3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$

Charged bottomonium

A. Bondar et al. [Belle],

Phys. Rev. Lett. 108, 122001 (2012)

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$

Charged bottomonium
A. Bondar et al. [Belle],

Phys. Rev. Lett. 108, 122001 (2012)
summary table

Parameter		$\Upsilon(1 S) \pi^{+}$	$\Upsilon(2 S) \pi^{+}$	$\Upsilon(3 S) \pi^{+}$
$Z_{b}(10610)^{+}$	$M\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$10608.5 \pm 3.4_{-1.4}^{+3.7}$	$10608.1 \pm 1.2_{-0.2}^{+1.5}$	$10607.4 \pm 1.5_{-0.2}^{+0.8}$
	$\Gamma\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$18.5 \pm 5.3_{-2.3}^{+6.1}$	$20.8 \pm 2.5_{-2.1}^{+0.3}$	$18.7 \pm 3.4_{-1.3}^{+2.5}$
$Z_{b}(10650)^{+}$	$M\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$10656.7 \pm 5.0_{-3.1}^{+1.1}$	$10650.7 \pm 1.5_{-0.2}^{+0.5}$	$10651.2 \pm 1.0_{-0.3}^{+0.4}$
	$\Gamma\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$12.1_{-4.8-0.6}^{+11.3+2}$	$14.2 \pm 3.7_{-0.4}^{+0.9}$	$9.3 \pm 2.2_{-0.5}^{+0.3}$
Relative phase (deg)	$67 \pm 36_{-52}^{+24}$	$-10 \pm 13_{-12}^{+34}$	$-5 \pm 22_{-33}^{+15}$	
Parameter		$h_{b}(1 P) \pi^{+}$	$h_{b}(2 P) \pi^{+}$	
$Z_{b}(10610)^{+}$	$M\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$10605 \pm 2_{-1}^{+3}$	10599_{-3-4}^{+6+5}	
	$\Gamma\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$11.4 \pm_{-3.9-1.2}^{+4.4+2.1}$	13_{-1-4}^{+10+9}	
$Z_{b}(10650)^{+}$	$M\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$10654 \pm 3_{-2}^{+1}$	10651_{-3-2}^{+2+3}	
	$\Gamma\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$20.9 \pm_{-4.7-5.7}^{+5.4+2.1}$	$19 \pm 7_{-7}^{+11}$	
Relative phase (deg)	187_{-57-12}^{+44+3}	$181_{-105-109}^{+65+74}$		

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$

Charged bottomonium

A. Bondar et al. [Belle],

Phys. Rev. Lett. 108, 122001 (2012)

3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}
$$

Charged bottomonium

P. Krokovny et al. [Belle],
Phys. Rev. D 88, 052016 (2013)

(1) Isospin partner? $Z_{b}{ }^{0}$

$$
\Upsilon(5 S) \rightarrow \Upsilon(n S) \pi^{0} \pi^{0}(n=1,2,3)
$$

C-parity of $\mathrm{Z}_{\mathrm{b}}(10610)^{0}: \mathrm{C}=-1\left(\psi\left(\mathrm{~J}^{\mathrm{PC}}=1^{-}\right) \& \pi^{0}\left(\mathrm{~J}^{\mathrm{PC}}=0^{-+}\right)\right)$
$\mathrm{Z}_{\mathrm{b}}(10610)^{0}$ was discovered, but $\mathrm{Z}_{\mathrm{b}}(10650)^{0}$ could not be seen due to low statistics...

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$

 Charged bottomonium
$Z_{b}(10610)^{+}$and $Z_{b}(10650)^{+}$seem to contain much component of $B^{* * b a r}$ and $B^{*} B^{* b a r}$.
3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$

Charged bottomonium
I. Adachi et al., [Belle], arXiv:1209.6450 [hep-ex]

(2) BB^{*} bar, $\mathrm{B}^{*} \mathrm{~B}^{* \text { bar }}$ molecule?

branching fraction \%

Channel	$Z_{b}(10610)^{+}$	$Z_{b}(10650)^{+}$
$\Upsilon(1 S) \pi^{+}$	0.61 ± 0.28	0.19 ± 0.09
$\Upsilon(2 S) \pi^{+}$	4.19 ± 1.51	1.54 ± 0.69
$\Upsilon(3 S) \pi^{+}$	2.49 ± 0.96	1.81 ± 0.75
$h_{b}(1 P) \pi^{+}$	4.40 ± 2.17	10.3 ± 5.5
$h_{b}(2 P) \pi^{+}$	6.26 ± 3.76	19.0 ± 9.3
$B^{+} \bar{B}^{* 0}+\bar{B}^{0} B^{*+}$	82.0 ± 3.5	-
$B^{*+} \bar{B}^{* 0}$	-	67.2 ± 7.1

$Z_{b}(10610)^{+}$and $Z_{b}(10650)^{+}$seem to contain much component of $B B^{* b a r}$ and $B^{*} B^{* b a r}$. \rightarrow Molecule picture?
3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}
$$

hadronic molecule interpretation
Though $Z_{b}(10610)^{+}$and $Z_{b}(10650)^{+}$may not be simple hadronic molecules, this picture provides us with a good starting point to under stand those properties.

If Z_{b} are $B^{*} B^{* b a r}$ and $B B^{* b a r}$ molecules ($Q q^{\text {bar }}{ }^{\text {bar }} \mathrm{a}$),

$$
\begin{aligned}
& \left|Z_{b}(10650)\right\rangle \simeq\left|B^{*} \bar{B}^{*}\right\rangle=\frac{1}{\sqrt{2}}\left|0_{H}^{-} \otimes 1_{l}^{-}\right\rangle+\frac{1}{\sqrt{2}}\left|1_{H}^{-} \otimes 0_{l}^{-}\right\rangle \\
& \left|Z_{b}(10610)\right\rangle \simeq\left|B \bar{B}^{*}\right\rangle=\frac{1}{\sqrt{2}}\left|0_{H}^{-} \otimes 1_{l}^{-}\right\rangle-\frac{1}{\sqrt{2}}\left|1_{H}^{-} \otimes 0_{l}^{-}\right\rangle
\end{aligned}
$$

heavy quark spins 1 and 0 should exist with same fraction!

[^0]
3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$ hadronic molecule interpretation

Many papers...

A. E. Bondar, A. Garmash, A. I. Milstein, R. Mizuk, and M. B. Voloshin, Phys. Rev. D 84, 054010 (2011)
T. Mehen and J. W. Powell, Phys. Rev. D 84, 114013 (2011)
M. Cleven, F.-K. Guo, C. Hanhart, and U.-G. Meissner, Eur. Phys. J. A 47, 120 (2011)
J.-R. Zhang, M. Zhong, and M.-Q. Huang, Phys. Lett. B 704, 312 (2011)
D. V. Bugg, Europhys. Lett. 96, 11002 (2011)
J. Nieves and M. Pavon Valderrama, Phys. Rev. D 84, 056015 (2011)
Z.-F. Sun, J. He, X. Liu, Z.-G. Luo, and S.-L. Zhu, Phys. Rev. D 84, 054002 (2011)
M. B. Voloshin, Phys. Rev. D 84, 031502 (2011)
S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys. Rev. D 86, 014004 (2012)
Y. Yang, J. Ping, C. Deng, and H.-S. Zong, J. Phys. G 39, 105001 (2012)
C.-Y. Cui, Y.-L. Liu, and M.-Q. Huang, Phys. Rev. D 85, 074014 (2012)
S. Ohkoda, Y. Yamaguchi, S. Yasui, and A. Hosaka, Phys. Rev. D 86, 117502 (2012)
Y. Dong, A. Faessler, T. Gutsche, and V. E. Lyubovitskij, J. Phys. G 40, 015002 (2013)
Z.-G. Wang, Eur. Phys. J. C 74, 2963 (2014)
Z.-G. Wang and T. Huang, Eur. Phys. J. C 74, 2891 (2014)
Z.-G. Wang and T. Huang, Nucl. Phys. A 930, 63 (2014)
S. Ohkoda, S. Yasui, and A. Hosaka, Phys. Rev. D 89, 074029 (2014)
J. M. Dias, F. Aceti, and E. Oset, Phys. Rev. D 91, 076001 (2015)
... and more
3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}
$$

hadronic molecule interpretation

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$
hadronic molecule interpretation

3. Heavy exotic hadrons -X, Y, Z hadrons-

 $Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$ hadronic molecule interpretation mass
3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}
$$

mass
hadronic molecule interpretation

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$ hadronic molecule interpretation
Classification of $\mathrm{B}^{(*)} \mathrm{B}^{(*) b a r}$ states
$\overline{J^{P C}}(J \leq 2)$

Components

$\overline{0^{+-}}$
0^{++}
0^{--}
0^{-+}
1^{+-}
1^{++}

$$
\begin{array}{ll}
\hline- & \text { C-parity is defined only for } \mathrm{I}_{\mathrm{z}}=0(\mathrm{I}=1) \\
B \bar{B}\left({ }^{1} S_{0}\right), B^{*} \bar{B}^{*}\left({ }^{1} S_{0}\right), B^{*} \bar{B}^{*}\left({ }^{5} D_{0}\right) & \\
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}+B^{*} \bar{B}\right)\left({ }^{3} P_{0}\right) & W_{b 0} \\
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} P_{0}\right), B^{*} \bar{B}^{*}\left({ }^{3} P_{0}\right) & \\
\hline \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} S_{1}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} D_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} S_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} D_{1}\right) & Z_{b} \\
\hline \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}+B^{*} \bar{B}\right)\left({ }^{3} S_{1}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}+B^{*} \bar{B}\right)\left({ }^{3} D_{1}\right), B^{*} \bar{B}^{*}\left({ }^{5} D_{1}\right) & \\
B \bar{B}\left({ }^{1} P_{1}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}+B^{*} \bar{B}\right)\left({ }^{3} P_{1}\right), B^{*} \bar{B}^{*}\left({ }^{1} P_{1}\right), B^{*} \bar{B}^{*}\left({ }^{5} P_{1}\right), B^{*} \bar{B}^{*}\left({ }^{5} F_{1}\right) & \\
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} P_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} P_{1}\right) & \\
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} D_{2}\right), B^{*} \bar{B}^{*}\left({ }^{3} D_{2}\right) & \\
B \bar{B}\left({ }^{1} D_{2}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}+B^{*} \bar{B}\right)\left({ }^{3} D_{2}\right), B^{*} \bar{B}^{*}\left({ }^{1} D_{2}\right), & \\
B^{*} \bar{B}^{*}\left({ }^{5} S_{2}\right), B^{*} \bar{B}^{*}\left({ }^{5} D_{2}\right), B^{*} \bar{B}^{*}\left({ }^{5} G_{2}\right) & \\
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} P_{2}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} F_{2}\right), B^{*} \bar{B}^{*}\left({ }^{3} P_{2}\right), B^{*} \bar{B}^{*}\left({ }^{3} F_{2}\right) & \\
\frac{1}{2}\left(B \bar{B}^{*}+B^{*} \bar{B}\right)\left({ }^{3} P_{2}\right), \frac{1}{=}\left(B \bar{B}^{*}+B^{*} \bar{B}\right)\left({ }^{3} F_{2}\right), B^{*} \bar{B}^{*}\left({ }^{5} P_{2}\right), B^{*} \bar{B}^{*}\left({ }^{5} F_{2}\right) & W_{b S,}, W_{t a}^{\prime}
\end{array}
$$

3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}
$$

hadronic molecule interpretation
C-parity of $\mathrm{B} * \mathrm{~B}^{(* *) \text { bor }}$

$\mathrm{BC}^{-1}=\mathrm{B}^{\text {bar }}$ $C B^{*} C^{-1}=B^{*}$ bar

(1) $\mathrm{BB}^{\text {bar. }}: \mathrm{CBB}^{\text {bar }} \mathrm{C}^{-1}=\left(\mathrm{CBC}^{-1}\right)\left(\mathrm{CB}^{\text {bar }} \mathrm{C}^{-1}\right)=\mathrm{B}^{\text {bar }} \mathrm{B}=\mathrm{BB}^{\text {bar }}$
(2) $\mathrm{BB}^{* b a r} \pm \mathrm{B}^{*} \mathrm{~B}^{\text {bar: }}$
$C\left(B^{* b a r} \pm B^{*} B^{\text {bar }}\right) C^{-1}$
$=\left(C B C^{-1}\right)\left(C B^{* b^{-1 r}} C^{-1}\right) \pm\left(C B^{*} C^{-1}\right)\left(C B^{\text {bar }} C^{-1}\right)$
$=B^{\text {bar }} B^{*} \pm B^{* b a r}(B)$
$= \pm\left(B^{* b a r} \pm B^{*} B^{b a r}\right)$
(3) $\mathrm{B}^{*} \mathrm{~B}^{* \text { bar. }}: \mathrm{C}\left(\mathrm{B}^{*} \mathrm{~B}^{* b a r}\right)_{\mathrm{S}=0,1,2} \mathrm{C}^{-1}=(-1)^{\mathrm{S}} \mathrm{B}^{*} \mathrm{~B}^{* b a r}$

$$
\begin{aligned}
& \left\langle j_{1}{ }_{2} \mathrm{~m}_{1} \mathrm{~m}_{2} \mathrm{l}_{1 \mathrm{j}_{2} \mathrm{~J}} \mathrm{JM}\right\rangle \quad J=0,1,2
\end{aligned}
$$

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$
hadronic molecule interpretation
$J P C=1^{+-}, \|=1$ from experiments
spin $^{\mathrm{P}} \underset{\text { momentum }}{\text { angular }} \mathrm{J}^{\mathrm{P}}$
BBbar $0 \cdot 0$

$\begin{aligned} & \mathrm{BB}^{*} \mathrm{Bar}^{1} \\ & 0-1 \end{aligned}$	$\begin{aligned} & 1^{+} \\ & 1^{+} \end{aligned}$	Swave Dwave		$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	
$\begin{aligned} & \mathrm{B}^{*} \mathrm{~B}^{*} \text { bar } \end{aligned}$	0^{+}	Swave	0^{+}	$+1$	
	1^{+}	Swave	1^{+}		
	$1{ }^{+}$	Dwave			
	2^{+}	Swave	2^{+}	+1	
	2^{+}	Dwave		+1	
	$-B^{*}$	$\left.{ }^{3} S_{1}\right), \frac{1}{\sqrt{2}}$ ($\overline{\mathrm{B}}^{*}-$	$\left.{ }^{3} S_{1}\right)$,	${ }^{*} \overline{\mathrm{~B}}^{*}$

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$
hadronic molecule interpretation If $\mathrm{JPC}^{\mathrm{PC}}=1^{++}$, $\mathrm{I}=1$...

$\begin{aligned} & \text { BBbar } \\ & 0-0- \end{aligned}$	$\begin{array}{r} \text { spin }^{\mathrm{P}} \\ \mathrm{O}^{+} \end{array}$	angular momentum Swave	$\begin{gathered} \text { JP } \\ 0^{+} \end{gathered}$	C-parity $+1$	
BB* bar +		Swave	l^{+}		
0^{-1} - plu	1^{+}	Dwave		± 1	
$\begin{aligned} & \mathrm{B}^{*} \mathrm{~B}^{*} \mathrm{ar} \\ & 1-1 \end{aligned}$	0^{+}	Swave	0^{+}	+1	
	$1+$	Swave	¢	-1	
	1^{+}	Dwave		-1	
	2^{+}	Swave	2^{+}	+1	
	2^{+}	Dwave		$+1$	
	$\frac{1}{\sqrt{2}}\left(\mathrm{~B} \overline{\mathrm{~B}}^{*}+\mathrm{B}^{*} \overline{\mathrm{~B}}\right)\left({ }^{3} S_{1}\right), \frac{1}{\sqrt{2}}\left(\mathrm{~B}^{*}+\mathrm{B}^{*} \overline{\mathrm{~B}}\right)\left({ }^{3} D_{1}\right), \mathrm{B}^{*} \overline{\mathrm{~B}}^{*}\left({ }^{5} D_{1}\right)$				

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$ hadronic molecule interpretation
Classification of $\mathrm{B}^{(*)} \mathrm{B}^{(*) b a r}$ states
$\overline{J^{P C}}(J \leq 2)$

Components

$\overline{0^{+-}}$
0^{++}
0^{--}
0^{-+}
1^{+-}
1^{++}

$$
\begin{array}{ll}
\hline- & \text { C-parity is defined only for } \mathrm{I}_{\mathrm{z}}=0(\mathrm{I}=1) \\
B \bar{B}\left({ }^{1} S_{0}\right), B^{*} \bar{B}^{*}\left({ }^{1} S_{0}\right), B^{*} \bar{B}^{*}\left({ }^{5} D_{0}\right) & \\
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}+B^{*} \bar{B}\right)\left({ }^{3} P_{0}\right) & W_{b 0} \\
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} P_{0}\right), B^{*} \bar{B}^{*}\left({ }^{3} P_{0}\right) & \\
\hline \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} S_{1}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} D_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} S_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} D_{1}\right) & Z_{b} \\
\hline \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}+B^{*} \bar{B}\right)\left({ }^{3} S_{1}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}+B^{*} \bar{B}\right)\left({ }^{3} D_{1}\right), B^{*} \bar{B}^{*}\left({ }^{5} D_{1}\right) & \\
B \bar{B}\left({ }^{1} P_{1}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}+B^{*} \bar{B}\right)\left({ }^{3} P_{1}\right), B^{*} \bar{B}^{*}\left({ }^{1} P_{1}\right), B^{*} \bar{B}^{*}\left({ }^{5} P_{1}\right), B^{*} \bar{B}^{*}\left({ }^{5} F_{1}\right) & \\
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} P_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} P_{1}\right) & \\
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} D_{2}\right), B^{*} \bar{B}^{*}\left({ }^{3} D_{2}\right) & \\
B \bar{B}\left({ }^{1} D_{2}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}+B^{*} \bar{B}\right)\left({ }^{3} D_{2}\right), B^{*} \bar{B}^{*}\left({ }^{1} D_{2}\right), & \\
B^{*} \bar{B}^{*}\left({ }^{5} S_{2}\right), B^{*} \bar{B}^{*}\left({ }^{5} D_{2}\right), B^{*} \bar{B}^{*}\left({ }^{5} G_{2}\right) & \\
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} P_{2}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} F_{2}\right), B^{*} \bar{B}^{*}\left({ }^{3} P_{2}\right), B^{*} \bar{B}^{*}\left({ }^{3} F_{2}\right) & \\
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}+B^{*} \bar{B}\right)\left({ }^{3} P_{2}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}+B^{*} \bar{B}\right)\left({ }^{3} F_{2}\right), B^{*} \bar{B}^{*}\left({ }^{5} P_{2}\right), B^{*} \bar{B}^{*}\left({ }^{5} F_{2}\right) & W_{B} \bar{B}_{2}, W_{b 2}^{\prime}
\end{array}
$$

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$
hadronic molecule interpretation
S. Ohkoda, et al.,
light meson exchange

The Schrödinger equation
Phys. Rev. D86, 014004 (2012)

$$
H \psi=E \psi
$$

$$
J P C=1^{+-}, 1=1
$$

$$
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} S_{1}\right) \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} D_{1}\right) \quad B^{*} \bar{B}^{*}\left({ }^{3} S_{1}\right)
$$

$$
B^{*} \bar{B}^{*}\left({ }^{3} D_{1}\right)
$$

$$
K_{1}+V_{11} \quad V_{12}
$$

$$
V_{13}
$$

$$
V_{14}
$$

$$
\begin{aligned}
& V_{21} \\
& V_{31}
\end{aligned}
$$

$$
K_{2}+V_{22}
$$

$$
\begin{gathered}
V_{23} \\
K_{3}+V \\
V_{43}
\end{gathered}
$$

$$
V_{24}
$$

$$
V_{41}
$$

$$
\begin{aligned}
& V_{32} \\
& V_{42}
\end{aligned}
$$

3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}
$$

hadronic molecule interpretation
S. Ohkoda, et al.,
π, ω, ρ meson exchange potentials Phys. Rev. D86, 014004 (2012)

$$
\begin{aligned}
& \pi, \omega, \rho \\
& B^{*} \text { M(} \bar{B}^{*}
\end{aligned}
$$

What are the π, ω, ρ potentials?

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$
hadronic molecule interpretation

$$
\begin{aligned}
& \pi=\left(\begin{array}{cc}
\frac{\pi^{0}}{\sqrt{2}} & \pi^{+} \\
\pi & -\frac{\pi^{0}}{\sqrt{2}}
\end{array}\right) \\
& A_{\mu} \simeq \frac{i}{f_{\pi}} \partial_{\mu} \hat{\pi} \\
& F_{\mu \nu}(\rho)=\partial_{\mu} \rho_{\nu}-\partial_{\nu} \rho_{\mu}+\left[\rho_{\mu}, \rho_{\nu}\right] \\
& \begin{array}{l}
\hat{\rho}_{\mu}=\left(\begin{array}{cc}
\frac{\rho^{0}}{\sqrt{2}}+\frac{\omega}{\sqrt{2}} & \rho^{+} \\
\rho^{-} & -\frac{\rho^{0}}{\sqrt{2}}+\frac{\omega}{\sqrt{2}}
\end{array}\right)_{\mu} \\
=-i \beta \operatorname{tr} \bar{H}
\end{array} \\
& \begin{aligned}
\mathcal{L}_{\nu H H}= & -i \beta \operatorname{tr} \bar{H}_{a} H_{b} v^{\mu}\left(\rho_{\mu}\right)_{b a} \\
& +i \lambda \operatorname{tr} \bar{H}_{a} H_{b} \sigma_{\mu \nu} F_{\mu \nu}(\rho)_{b a}
\end{aligned} \\
& \begin{array}{l}
+i \lambda \operatorname{tr} \bar{H}_{a} H_{b} \sigma_{\mu \nu} F_{\mu \nu}(\rho)_{b a} \\
\rho_{\mu}=i \frac{g_{V}}{\sqrt{2}} \hat{\rho}_{\mu}
\end{array} \\
& \tilde{H a}_{a}=\mathrm{YO}^{\mathrm{Ha} \gamma_{0}^{7}} \\
& { }_{{ }_{v}} \gamma_{5} A_{b a}^{v}
\end{aligned}
$$

$$
\begin{aligned}
& H_{a}=\frac{1+\psi}{2}\left[P_{a \mu}^{*} \gamma^{\mu}-P_{a} \gamma_{5}\right]
\end{aligned}
$$

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$
hadronic molecule interpretation

4. Heavy exotic hadrons $-X, Y, Z$ hadronsReview: $\pi \mathrm{B}^{(*)} \mathrm{B}^{*}$ coupling from effective theory
(2) Constructing effective Lagrangian (leading order of $\mathrm{m}_{Q} \rightarrow \infty$)

$$
\mathcal{L}_{\text {heavy-light }}=\operatorname{Tr} \bar{H}_{v} v \cdot i D H_{v}+g \operatorname{Tr} \bar{H}_{v} H_{v} \gamma_{\mu} \gamma_{5} A^{\mu}+O(1 / M)
$$

chiral covariant derivative: $D^{\mu} H_{v}=\partial^{\mu} H_{v}-i V^{\mu} H_{v} \begin{aligned} & \text { invariant under HQS } \\ & \text { and chiral symmetry }\end{aligned}$ Non-linear chiral transformation
Non-linear rep. of π field: $\xi=\exp \left(i \phi / \sqrt{2} f_{\pi}\right) \quad \phi=\left(\begin{array}{cc}\pi^{0} & \sqrt{2} \pi^{+} \\ \sqrt{2} \pi^{-} & -\pi^{0}\end{array}\right)$ Vector current: $V^{\mu}(x)=\frac{i}{2}\left(\xi^{\dagger} \partial^{\mu} \xi+\xi \partial^{\mu} \xi^{\dagger}\right)$ Axial-vector current: $A^{\mu}(x)=\frac{i}{2}\left(\xi^{\dagger} \partial^{\mu} \xi-\xi \partial^{\mu} \xi^{\dagger}\right)$ (even \# of m)
(odd \# of π)

$$
V^{\mu}(x) \rightarrow U_{q} V^{\mu}(x) U_{q}^{\dagger}+i U_{q} \partial^{\mu} U_{q}^{\dagger}
$$

$$
A^{\mu} \rightarrow U_{q} A^{\mu} U_{q}^{\dagger}
$$

Example of vertex structure (axial-vector coupling) $A^{\mu} \simeq-\partial^{\mu} \phi / \sqrt{2} f_{\pi} \quad$ We will see details later

$$
\left.\operatorname{time} \uparrow q^{i} P_{v}^{* i \dagger} P_{v}\right|_{\mathrm{B}} ^{\mathrm{B}^{*}}-\left.\bar{\pi} q^{i} \quad q^{i} P_{v}^{\dagger} P_{v}^{* i}\right|_{\mathrm{B}^{*}} ^{\mathrm{B}}-\left.\bar{\pi} q^{i} \quad q^{i} \varepsilon^{i j k} P_{v}^{* j \dagger} P_{v}^{* k}\right|_{\mathrm{B}^{*}} ^{\pi-q^{i}} \quad\left(i, j, k=1_{88} 2,3\right)
$$

3. Heavy exotic hadrons - X, Y, Z hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+} \quad \text { JPC=1+,l=1}
$$

hadronic molecule interpretation
$\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} S_{1}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} D_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} S_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} D_{1}\right)$

2 questions
(1) Why do we consider $\mathrm{BB}^{* \operatorname{bar}}\left(\mathrm{~B}^{*} \mathrm{~B}^{\text {bar }}\right.$) and $\mathrm{B}^{*} \mathrm{~B}^{* \text { bar }}$ simultaneously?

$$
\begin{gathered}
\mathrm{BB}^{*} \text { bar } \pm \mathrm{B}^{*} \mathrm{~B}^{\text {ar }} \text { sector } \\
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} S_{1}\right) \\
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} D_{1}\right)
\end{gathered}
$$

$$
\frac{1}{\sqrt{2}}\left(B \bar{B}_{i}^{*}-B_{i}^{*} \bar{B}\right)
$$

Answer: Heavy quark spin (HQS) symmetry make them mixed.
3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+} \quad J \mathrm{PC}=1+, l=1
$$

hadronic molecule interpretation

Transformation for heavy quark spin rotation

$$
\begin{aligned}
\text { B meson: } B \rightarrow B+\delta B & \delta B=-\frac{1}{2} \theta_{i} B_{i}^{*} \\
\text { B}^{*} \text { meson: } B_{i}^{*} \rightarrow B_{i}^{*}+\delta B_{i}^{*} & \delta B_{i}^{*}=\frac{1}{2} \varepsilon_{i j k} \theta_{j} B_{k}^{*}-\frac{1}{2} \theta_{i} B
\end{aligned}
$$

(1) $\mathrm{BB}^{* b a r} \pm \mathrm{B}^{*} \mathrm{~B}^{\text {bar }}$ sector:

$$
\begin{aligned}
& \delta \frac{1}{\sqrt{2}}\left(B \bar{B}_{i}^{*}-B_{i}^{*} \bar{B}\right) \\
= & \frac{1}{\sqrt{2}}\left(\delta B \bar{B}_{i}^{*}+B \delta \bar{B}_{i}^{*}-\delta B_{i}^{*} \bar{B}-B_{i}^{*} \delta \bar{B}\right) \\
= & \frac{1}{\sqrt{2}}\left(\left(-\frac{1}{2} \theta_{j} B_{j}^{*}\right) \bar{B}_{i}^{*}+B\left(\frac{1}{2} \varepsilon_{i j k} \theta_{j} \bar{B}_{k}^{*}-\frac{1}{2} \theta_{i} \bar{B}\right)-\left(\frac{1}{2} \varepsilon_{i j k} \theta_{j} B_{k}^{*}-\frac{1}{2} \theta_{i} B\right) \bar{B}-B_{i}^{*}\left(-\frac{1}{2} \theta_{j} \bar{B}_{j}^{*}\right)\right) \\
= & \frac{1}{\sqrt{2}}\left(-\frac{1}{2} \theta_{j} B_{j}^{*} \bar{B}_{i}^{*}+B \frac{1}{2} \varepsilon_{i j k} \theta_{j} \bar{B}_{k}^{*}-\frac{1}{2} \varepsilon_{i j k} \theta_{j} B_{k}^{*} \bar{B}+\frac{1}{2} \theta_{j} B_{i}^{*} \bar{B}_{j}^{*}\right) \\
= & \frac{1}{\sqrt{2}}\left(-\frac{1}{2} \theta_{j}\left(B_{j}^{*} \bar{B}_{i}^{*}-B_{i}^{*} \bar{B}_{j}^{*}\right)+\frac{1}{2} \varepsilon_{i j k} \theta_{j}\left(B \bar{B}_{k}^{*}-B_{k}^{*} \bar{B}\right)\right) \\
= & -\frac{1}{2} \theta_{j} \frac{1}{\sqrt{2}}\left(B_{j}^{*} \bar{B}_{i}^{*}-B_{i}^{*} \bar{B}_{j}^{*}\right)+\frac{1}{2} \varepsilon_{i j k} \theta_{j} \frac{1}{\sqrt{2}}\left(B \bar{B}_{k}^{*}-B_{k}^{*} \bar{B}\right)
\end{aligned}
$$

(2) $B^{*} B^{* b o r}$:

$$
\begin{aligned}
& \delta \frac{1}{\sqrt{2}}\left(B_{i}^{*} \bar{B}_{j}^{*}-B_{j}^{*} B_{i}^{*}\right) \\
= & \frac{1}{\sqrt{2}}\left(\delta B_{i}^{*} \bar{B}_{j}^{*}+B_{i}^{*} \delta \bar{B}_{j}^{*}-\delta B_{j}^{*} B_{i}^{*}-B_{j}^{*} \delta B_{i}^{*}\right) \\
= & \frac{1}{\sqrt{2}}\left(\left(\frac{1}{2} \varepsilon_{i k l} \theta_{k} B_{l}^{*}-\frac{1}{2} \theta_{i} B\right) \bar{B}_{j}^{*}+B_{i}^{*}\left(\frac{1}{2} \varepsilon_{j k l} \theta_{k} \bar{B}_{l}^{*}-\frac{1}{2} \theta_{j} \bar{B}\right)\right. \\
& \left.-\left(\frac{1}{2} \varepsilon_{j k l} \theta_{k} B_{l}^{*}-\frac{1}{2} \theta_{j} B\right) \bar{B}_{i}^{*}-B_{j}^{*}\left(\frac{1}{2} \varepsilon_{i k l} \theta_{k} \bar{B}_{l}^{*}-\frac{1}{2} \theta_{i} \bar{B}\right)\right) \\
= & \frac{1}{\sqrt{2}}\left(\frac{1}{2} \varepsilon_{i k l} \theta_{k} B_{l}^{*} \bar{B}_{j}^{*}-\frac{1}{2} \theta_{i} B \bar{B}_{j}^{*}+\frac{1}{2} \varepsilon_{j k l} \theta_{k} B_{i}^{*} \bar{B}_{l}^{*}-\frac{1}{2} \theta_{j} B_{i}^{*} \bar{B}\right. \\
& \left.-\frac{1}{2} \varepsilon_{j k l} \theta_{k} B_{l}^{*} \bar{B}_{i}^{*}+\frac{1}{2} \theta_{j} B \bar{B}_{i}^{*}-\frac{1}{2} \varepsilon_{i k l} \theta_{k} B_{j}^{*} \bar{B}_{l}^{*}+\frac{1}{2} \theta_{i} B_{j}^{*} \bar{B}\right) \\
= & \frac{1}{\sqrt{2}}\left(\frac{1}{2} \varepsilon_{i k l} \theta_{k} B_{l}^{*} \bar{B}_{j}^{*}-\frac{1}{2} \varepsilon_{i k l} \theta_{k} B_{j}^{*} \bar{B}_{l}^{*}+\frac{1}{2} \varepsilon_{j k l} \theta_{k} B_{i}^{*} \bar{B}_{l}^{*}-\frac{1}{2} \varepsilon_{j k l} \theta_{k} B_{l}^{*} \bar{B}_{i}^{*}\right. \\
& \left.-\frac{1}{2} \theta_{i} B \bar{B}_{j}^{*}-\frac{1}{2} \theta_{j} B_{i}^{*} \bar{B}+\frac{1}{2} \theta_{j} B \bar{B}_{i}^{*}+\frac{1}{2} \theta_{i} B_{j}^{*} \bar{B}\right) \\
= & \frac{1}{2} \varepsilon_{i k l} \theta_{k} \frac{1}{\sqrt{2}}\left(B_{l}^{*} \bar{B}_{j}^{*}-B_{j}^{*} \bar{B}_{l}^{*}\right)+\frac{1}{2} \varepsilon_{j k l} \theta_{k} \frac{1}{\sqrt{2}}\left(B_{i}^{*} \bar{B}_{l}^{*}-B_{l}^{*} \bar{B}_{i}^{*}\right) \\
& -\frac{1}{2} \theta_{i} \frac{1}{\sqrt{2}}\left(B \bar{B}_{j}^{*}-B_{j}^{*} \bar{B}\right)+\frac{1}{2} \theta_{j} \frac{1}{\sqrt{2}}\left(B \bar{B}_{i}^{*}-B_{i}^{*} \bar{B}\right)
\end{aligned}
$$

3. Heavy exotic hadrons $-X, Y, Z$ hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+} \quad J \mathrm{PC}=1^{++, l=1}
$$

hadronic molecule interpretation
$\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} S_{1}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} D_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} S_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} D_{1}\right)$

2 questions
(2) Why do we consider S-wave and D-wave simultaneously?

$$
\begin{aligned}
& \text { BB*bar } \pm \mathrm{B}^{*} \text { Bbar sector } \\
& \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} S_{1}\right) \\
& \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} D_{1}\right)
\end{aligned}
$$

$$
\frac{1}{\sqrt{2}}\left(B \bar{B}_{i}^{*}-B_{i}^{*} \bar{B}\right)
$$

$B^{*} B^{* b a r}$ sector

$$
B^{*} \bar{B}^{*}\left({ }^{3} S_{1}\right)
$$

$$
B^{*} \bar{B}^{*}\left({ }^{3} D_{1}\right)
$$

$$
\frac{1}{\sqrt{2}}\left(B_{i}^{*} \bar{B}_{j}^{*}-B_{j}^{*} B_{i}^{*}\right)
$$

3. Heavy exotic hadrons - X, Y, Z hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+} \quad J^{\mathrm{PC}}=1+,,=1
$$

hadronic molecule interpretation
$\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} S_{1}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} D_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} S_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} D_{1}\right)$

2 questions
(2) Why do we consider S-wave and D-wave simultaneously?

$$
\begin{aligned}
& \mathrm{BB}^{* \text { bar }} \pm \mathrm{B}^{*} \mathrm{~B}^{\text {bar }} \text { sector } \\
& \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} S_{1}\right) \\
& \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} D_{1}\right)
\end{aligned}
$$

B*B*bar sector

$$
B^{*} \bar{B}^{*}\left({ }^{3} S_{1}\right)
$$

$$
B^{*} \bar{B}^{*}\left({ }^{3} D_{1}\right)
$$

$$
\frac{1}{\sqrt{2}}\left(B \bar{B}_{i}^{*}-B_{i}^{*} \bar{B}\right)
$$

$$
\frac{1}{\sqrt{2}}\left(B_{i}^{*} \bar{B}_{j}^{*}-B_{j}^{*} B_{i}^{*}\right)
$$

Answer: Tensor potential mixes L and $L \pm 2$ components.
3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+} \quad J^{P C}=1^{+}, 1=1
$$

hadronic molecule interpretation Tensor operator
(1) OPEP for NN: $\mathcal{L}_{\text {Yukawa }}=-\frac{g_{A}}{2 F} \bar{N} \gamma^{\mu} \gamma_{5} \partial_{\mu} \phi N$

(2) OPEP for $\mathrm{B}^{(*)} \mathrm{B}^{(*)}$ bar: $\mathcal{L}_{\pi H H}=g \operatorname{tr} \bar{H}_{a} H_{b} \gamma_{\nu} \gamma_{5} A_{b a}^{\nu}$

(3) $\mathrm{BB}^{\text {bar }} \rightarrow B^{*} B^{* b a r}$

(4) $B B^{* b a r} \rightarrow B^{*} B^{* b a r}$

$$
-\left(\sqrt{2} \frac{g}{f_{\pi}}\right)^{2} \frac{1}{3}\left[\vec{\varepsilon}_{1}^{*} \cdot \vec{\varepsilon}_{2}^{*} C_{\pi}(r)+S_{\varepsilon_{1}^{*}, \varepsilon_{2}^{*}} T_{\pi}(r)\right] \vec{\tau}_{1} \cdot \vec{\tau}_{2}
$$

(2) $B^{*} B^{*}$ bar $\rightarrow B^{*} B^{*}$ bar $B^{*} \quad B^{*}$ bar

$-\left(\sqrt{2} \frac{g}{f_{\pi}}\right)^{2} \frac{1}{3}\left[\vec{T}_{1} \cdot \vec{T}_{2} C_{\pi}(r)+S_{T_{1}, T_{2}} T_{\pi}(r)\right] \vec{\tau}_{1} \cdot \vec{\tau}_{2}$

$$
\left(\sqrt{2} \frac{g}{f_{\pi}}\right)^{2} \frac{1}{3}\left[\vec{\varepsilon}_{1}^{*} \cdot \vec{T}_{2} C_{\pi}(r)+S_{\varepsilon_{1}^{*}, T_{2}} T_{\pi}(r)\right] \vec{\tau}_{1} \cdot \vec{\tau}_{2}
$$

Polarization vector $\left(B^{*}\right): \vec{\varepsilon}^{(\pm)}=(\mp 1 / \sqrt{2}, \pm i / \sqrt{2}, 0) \vec{\varepsilon}^{(0)}=(0,0,1)$
Spin 1 operator $\left(B^{*}\right): \vec{T}=\left(T^{1}, T^{\dot{2}}, T^{3}\right) T^{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) T^{2}=\frac{i}{\sqrt{2}}\left(\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0\end{array}\right) T^{3}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right)$
Tensor operator:

$$
\begin{aligned}
& S_{\varepsilon_{1}^{*}, \varepsilon_{2}^{*}}=3\left(\vec{\varepsilon}^{\left(\lambda_{1}\right) *} \cdot \hat{r}\right)\left(\vec{\varepsilon}^{\left(\lambda_{2}\right) *} \cdot \hat{r}\right)-\vec{\varepsilon}^{\left(\lambda_{1}\right) *} \cdot \vec{\varepsilon}^{\left(\lambda_{2}\right) *} S_{T_{1}, T_{2}}=3\left(\vec{T}_{1} \cdot \hat{r}\right)\left(\vec{T}_{2} \cdot \hat{r}\right)-\vec{T}_{1} \cdot \vec{T}_{2} \\
& S_{\varepsilon_{1}^{*}, \varepsilon_{2}}=3\left(\vec{\varepsilon}^{\left(\lambda_{1}\right) *} \cdot \hat{r}\right)\left(\vec{\varepsilon}^{\left(\lambda_{2}\right)} \cdot \hat{r}\right)-\vec{\varepsilon}^{\left(\lambda_{1}\right) *} \cdot \vec{\varepsilon}^{\left(\lambda_{2}\right)} \quad S_{\varepsilon_{1}^{*}, T_{2}}=3\left(\vec{\varepsilon}^{\left(\lambda_{1}\right) *} \cdot \hat{r}\right)\left(\vec{T}_{2} \cdot \hat{r}\right)-\vec{\varepsilon}^{\left(\lambda_{1}\right) *} \cdot \vec{T}_{2}
\end{aligned}
$$

3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+} \quad \text { गPC=1+, } 1=1
$$

hadronic molecule interpretation
Summary table: mixing effects (HQS, tensor potential)

Components	$\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} S_{1}\right)$	$\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} D_{1}\right)$	$B^{*} \bar{B}^{*}\left({ }^{3} S_{1}\right)$	$B^{*} \bar{B}^{*}\left({ }^{3} D_{1}\right)$
$\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} S_{1}\right)$		Tensor	HQS	Tensor
$\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} D_{1}\right)$	Tensor	Tensor	Tensor	HQS Tensor
$B^{*} \bar{B}^{*}\left({ }^{3} S_{1}\right)$	HQS	Tensor		Tensor
$B^{*} \bar{B}^{*}\left({ }^{3} D_{1}\right)$	Tensor	HQS Tensor	Tensor	Tensor
	Central potential: $C_{\pi}(r) \simeq \frac{1}{r} e^{-m_{\pi} r}$			
Tensor potential: $T_{\pi}(r) \simeq\left(1+\frac{3}{m_{\pi} r}+\frac{3}{\left(m_{\pi} r\right)^{2}}\right) \frac{1}{r} e^{-m_{\pi} r}$				

3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+} \quad \text { JPC=1++,l=1 }
$$

hadronic molecule interpretation

$$
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} S_{1}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} D_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} S_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} D_{1}\right)
$$

$$
H \psi=E \psi
$$

(1) Kinetic term

$$
K_{1^{+-}}=\operatorname{diag}\left(-\frac{1}{2 \tilde{m}_{\mathrm{BB}^{*}}} \Delta_{0},-\frac{1}{2 \tilde{m}_{\mathrm{BB}^{*}}} \Delta_{2},-\frac{1}{2 \tilde{m}_{\mathrm{B}^{*} \mathrm{~B}^{*}}} \Delta_{0}+\Delta m_{\mathrm{BB}^{*}},-\frac{1}{2 \tilde{m}_{\mathrm{B}^{*} \mathrm{~B}^{*}}} \Delta_{2}+\Delta m_{\mathrm{BB}^{*}}\right)
$$

(2) OPEP

$$
V_{1^{+-}}^{\pi}=\left(\begin{array}{cccc}
\mathrm{V}_{\mathrm{C}} & -\sqrt{6 \mathrm{~V}_{\mathrm{T}}} & -2 \mathrm{~V}_{\mathrm{C}} & -\sqrt{2 \mathrm{~V}_{\mathrm{T}}} \\
-\sqrt{2 \mathrm{~V}_{\mathrm{T}}} & \mathrm{~V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{T}} & -\sqrt{2 \mathrm{~V}_{\mathrm{T}}} & -2 \mathrm{~V}_{\mathrm{C}}+\left(\mathrm{V}_{\mathrm{T}}\right. \\
-2 \mathrm{~V}_{\mathrm{C}} & -\sqrt{2 \mathrm{~V}_{\mathrm{T}}} & \mathrm{~V}_{\mathrm{C}} & -\sqrt{2 \mathrm{~V}_{\mathrm{T}}} \\
-\sqrt{2 \mathrm{~V}_{\mathrm{T}}} & -2 \mathrm{~V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{T}} & -\sqrt{2 \mathrm{~V}_{\mathrm{T}}} & \mathrm{~V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{T}}
\end{array}\right) \text { Tensor potential }
$$

(3) Vector-meson exchange potential

$$
V_{1^{+-}}^{v}=\left(\begin{array}{cccc}
2 V_{\mathrm{C}}^{v}+V_{\mathrm{C}}^{v \prime} & \sqrt{2 V_{\mathrm{T}}^{v}} & -4 V_{\mathrm{C}}^{v} & \sqrt{2} V_{\mathrm{T}}^{v} \\
\sqrt{2 V_{\mathrm{T}}^{v}} & 2 V_{\mathrm{C}}^{v}-V_{\mathrm{T}}^{v}+V_{\mathrm{C}}^{v \prime} & \sqrt{2 V_{\mathrm{T}}^{v}} & -4 V_{\mathrm{C}}^{v}-V_{\mathrm{T}}^{v} \\
-4 V_{\mathrm{C}}^{v} & \sqrt{2} V_{\mathrm{T}}^{v} & 2 V_{\mathrm{C}}^{v}+V_{\mathrm{C}}^{v \prime} & \sqrt{2 V_{\mathrm{T}}^{v}} \\
\sqrt{2 V_{\mathrm{T}}^{v}} & -4 V_{\mathrm{C}}^{v}-V_{\mathrm{T}}^{v} & \sqrt{2 V_{\mathrm{T}}^{v}} & 2 V_{\mathrm{C}}^{v}-\left(V_{\mathrm{T}}^{v}+V_{\mathrm{C}}^{v \prime}\right.
\end{array}\right)
$$

3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+} \quad J^{\mathrm{PC}}=1+,,=1
$$

hadronic molecule interpretation

$$
\begin{gathered}
\left.\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right){ }^{3} S_{1}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} D_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} S_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} D_{1}\right) \\
H \psi=E \psi
\end{gathered}
$$

interaction

3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+} \quad J^{P C}=1^{+}, 1=1
$$

hadronic molecule interpretation

$$
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} S_{1}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} D_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} S_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} D_{1}\right)
$$

How to solve scattering problem? (review)

(1) Partial wave decomposition

$$
\begin{aligned}
\varphi^{(+)} & (r, \theta)=e^{i k z}+f(\theta) \frac{e^{i k r}}{r} \\
f(\theta) & =\sum_{\ell=0}^{\infty}(2 \ell+1) \frac{e^{2 i \delta_{\ell}}-1}{2 i k} P_{\ell}(\cos \theta) \\
& =\sum_{\ell=0}^{\infty}(2 \ell+1) f_{\ell}(k) P_{\ell}(\cos \theta)
\end{aligned}
$$

Parrial wave amplitude
(2) Resonance (definition by phase shift)

$$
\cot \delta_{\ell}\left(k_{r}\right)=0 \Longleftrightarrow \delta_{\ell}\left(k_{r}\right)=\frac{\pi}{2}
$$

$\cot \delta_{\ell}=\cot \frac{\pi}{2}+\left.\frac{\mathrm{d}}{\mathrm{d} E} \cot \delta_{\ell}\right|_{\delta_{\ell}=\pi / 2}\left(E-E_{r}\right)+$.
decay width: $\left.\frac{\mathrm{d}}{\mathrm{d} E} \cot \delta_{\ell}\right|_{\delta_{\ell}=\pi / 2} \equiv-\frac{2}{\Gamma} \quad E_{r}=\frac{k_{r}^{2}}{2 m}$
Pole as complex energy $f_{\ell}(k) \sim-\frac{1}{k} \frac{2}{E-E_{r}+i \frac{\Gamma}{2}}$

Matching (direct) method: finding $\delta_{1}(\mathrm{k})$
\square Complex scaling method: finding $\mathrm{E}_{\mathrm{r}}+\mathrm{i} / 2$
3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+} \quad J^{\mathrm{PC}}=1+,,=1
$$

hadronic molecule interpretation

$$
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left(C_{1}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{(} D_{1}\right), B^{*} \bar{B}^{*}\left(S_{1}\right), B^{*} \bar{B}^{*}\left(D_{1}\right)
$$

(1) Centrifugal potential

Typical mechanisms of resonances
(2) Feshbach resonance
(3) E-dependent potential
3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+} \quad \jmath \mathrm{PC}=1+, l=1
$$

hadronic molecule interpretation

$$
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left(S_{1}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{(} D_{1}\right), B^{* *} \bar{B}^{*}\left(S_{1}\right), B^{*} \bar{B}^{*}\left(D_{1}\right)
$$

Typical mechanisms of resonances
(1) Centrifugal potential
$V(r)$
(2) Feshbach resonance (3) E-dependent potential
centrifugal potential
$\longleftarrow \quad L(L+1) / 2 \mu r^{2}$

3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+} \quad J P C=1^{++, l=1}
$$

hadronic molecule interpretation

$$
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} S_{1}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{3} D_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} S_{1}\right), B^{*} \bar{B}^{*}\left({ }^{3} D_{1}\right)
$$

Typical mechanisms of resonances
(1) Centrifugal potential $V(r)$
\uparrow_{1} centrifugal potential

$$
-L(L+1) / 2 \mu r^{2}
$$

$$
V_{\text {eff }}(r)
$$

(2) Feshbach resonance Energy

$$
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{~A}^{\prime}+\mathrm{B}^{\prime} \rightarrow \mathrm{A}+\mathrm{B}
$$

3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
Z_{b}(10610)^{+} \& Z_{b}(10650)^{+} \quad J P C=1^{++, l=1}
$$

hadronic molecule interpretation

$$
\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left(\mathcal{S}_{1}\right), \frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)\left({ }^{(} D_{1}\right), B^{*} \bar{B}^{*}\left(S_{1}\right), B^{*} \bar{B}^{*}\left(D_{1}\right)
$$

Typical mechanisms of resonances
(1) Centrifugal potential
$V(r)$
\uparrow_{1} centrifugal potential - $\mathrm{L}(\mathrm{L}+1) / 2 \mu \mathrm{r}^{2}$
$V_{\text {eff }}(r)$
$V(r)$
(2) Feshbach resonance Energy

$$
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{~A}^{\prime}+\mathrm{B}^{\prime} \rightarrow \mathrm{A}+\mathrm{B}
$$

(3) E-dependent potential
$\wedge(1405)$ baryon resonance

Weinberg-Tomozawa interaction
(Chiral symmerty for NG boson)
3. Heavy exotic hadrons

Bio

Hadronic molecule
Numerical result

$\overline{I^{G}\left(J^{P C}\right)}$	Threshold	$E[\mathrm{MeV}]$		Decay channels	
		π potential	$\pi \rho \omega$ potential	s wave	p wave
$1^{+}\left(0^{+-}\right)$					$\mathrm{h}_{\mathrm{b}}+\pi, \chi_{\mathrm{b} 0,1,2}+\rho$
$1^{-}\left(0^{++}\right)$	B \bar{B}	-6.5	no	$\eta_{\mathrm{b}}+\pi, \Upsilon+\rho$	$\mathrm{h}_{\mathrm{b}}+\rho^{*}, \chi_{\mathrm{b} 1}+\pi$
$1^{+}\left(0^{--}\right)$	$\mathrm{B} \overline{\mathrm{B}}^{*}$	-9.9	-9.8	$\chi_{\mathrm{b} 1}+\rho^{*}$	$\eta_{\mathrm{b}}+\rho, \mathrm{Y}+\pi$
$1^{-}\left(0^{-+}\right)$	$\mathrm{B} \overline{\mathrm{B}}^{*}$	no	no	$\mathrm{h}_{\mathrm{b}}+\rho, \chi_{\mathrm{b} 0}+\pi$	$\bigcirc+\rho$
$1^{+}\left(1^{+-}\right)$	$\mathrm{B} \overline{\mathrm{B}}^{*}$	-7.7	$\begin{gathered} -8.5 \\ 50.4-i 15.1 / 2 \end{gathered}$	nd statè $+\pi$ nant state	$\mathrm{h}_{\mathrm{b}}+\pi, \chi_{\mathrm{b} 1}+\rho^{*}$
$1^{-}\left(1^{++}\right)$	$\mathrm{B} \overline{\mathrm{B}}^{*}$	-16.7	-1.9	$\Upsilon+\rho$	$\mathrm{h}_{\mathrm{b}}+\rho^{*}, \chi_{\mathrm{b} 0,1}+\pi$
$1^{+}\left(1^{--}\right)$	$B \bar{B}$	$\begin{gathered} 7.0-i 37.9 / 2 \\ 58.8-i 30.0 / 2 \end{gathered}$	$\begin{gathered} 7.1-i 37.4 / 2 \\ 58.6-i 27.7 / 2 \end{gathered}$	$\mathrm{h}_{\mathrm{b}}+\pi, \chi_{\mathrm{b} 0,1,2}+\rho^{*}$	$\eta_{\mathrm{b}}+\rho, \mathrm{Y}+\pi$
$1^{-}\left(1^{-+}\right)$	$\mathrm{B} \overline{\mathrm{B}}^{*}$	no	no	$\mathrm{h}_{\mathrm{b}}+\rho, \chi_{\mathrm{b} 1}+\pi$	$\eta_{\mathrm{b}}+\pi, \mathrm{Y}+\rho$
$1^{+}\left(2^{+-}\right)$	$\mathrm{B} \overline{\mathrm{B}}^{*}$	no	no		$\mathrm{h}_{\mathrm{b}}+\pi, \chi_{\mathrm{b} 0,1,2}+\rho$
$1^{-}\left(2^{++}\right)$	$\mathrm{B} \overline{\mathrm{B}}$	$63.5-i 8.3 / 2$	$62.7-i 8.4 / 2$	$\Upsilon+\rho$	$\mathrm{h}_{\mathrm{b}}+\rho^{*}, \chi_{\mathrm{b} 1,2}+\pi$
$1^{-}\left(2^{-+}\right)$	$\mathrm{B} \overline{\mathrm{B}}^{*}$	no	no	$\mathrm{h}_{\mathrm{b}}+\rho$	$Y+\rho$
$1^{+}\left(2^{--}\right)$	$B \bar{B}^{*}$	$\begin{gathered} 2.0-i 4.1 / 2 \\ 44.2-i 2.5 / 2 \end{gathered}$	$\begin{gathered} 2.0-i 3.9 / 2 \\ 44.1-i 2.8 / 2 \end{gathered}$	$\chi_{\mathrm{b} 1}+\rho^{*}$	$\eta_{\mathrm{b}}+\rho, \mathrm{Y}+\pi$

S. Ohkoda, et al.,

Phys. Rev. D86, 014004 (2012)
3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$
hadronic molecule interpretation
Numerical result

$$
10655
$$

$$
B^{*} \bar{B}^{*}(10650)--\frac{\exp }{Z_{b}(10653)}=\text { resonant state }-\frac{10649}{W_{b 2}^{\prime}}-==
$$

$I^{G} J^{P C} \quad 1^{+} 0^{--} \quad 1^{+} 1^{+-} \quad 1^{-1+} 1^{++} \quad 1^{+} 1^{--} \quad 1^{-} 2^{++} \quad 1^{+} 2^{--} \quad 0^{+} 1^{-+}$

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$
 hadronic molecule interpretation

Other effects?

(1) $Y \Pi, h_{b} \Pi$ lOOP Method by M. R. Pennington and D. J. Wilson, Phys. Rev. D 76, 077502 (2007)

A. Loop propagator:

$$
\begin{gathered}
G_{z}(s)=\frac{i}{s-\mathcal{M}^{2}(s)}=\frac{i}{s-m_{0}^{2}-\Pi(s)} \\
=\frac{i}{s-m_{0}^{2}-\sum_{n=1} \Pi_{n}(s)}, \\
\sum_{n=1} \Delta \Pi_{n}\left(s, s_{0}\right)=\mathcal{M}^{2}(s)-m_{0}^{2} \equiv \delta M^{2}(s)
\end{gathered}
$$

B. Dispersion relation:

$$
\begin{aligned}
\Delta \Pi_{n}\left(s, s_{0}\right) & \equiv \Pi_{n}(s)-\Pi_{n}\left(s_{0}\right) \\
& =\frac{\left(s-s_{0}\right)}{\pi} \int_{s_{n}}^{\infty} d s^{\prime} \frac{\operatorname{Im} \Pi_{n}\left(s^{\prime}\right)}{\left(s^{\prime}-s\right)\left(s^{\prime}-s_{0}\right)}
\end{aligned}
$$

C. Parametrization:

$$
\operatorname{Im} \Pi_{n}(s)=-g_{n}^{2}\left(\frac{2 q_{\mathrm{cm}}}{\sqrt{s}}\right)^{2 L+1} \exp \left(-\frac{q_{\mathrm{cm}}^{2}}{\Lambda^{2}}\right)
$$

D. Numerical result

- g_{n} and g_{m} are determined from $\mathrm{Zb} \rightarrow \mathrm{Y} \Pi, \mathrm{h}_{\mathrm{b}} \Pi$
$-\mathrm{s}_{0} \approx 9000 \mathrm{MeV}$

	$\mathrm{Y}(1 S) \pi$	$\mathrm{Y}(2 S) \pi$	$\mathrm{Y}(3 S) \pi$	$\mathrm{h}_{\mathrm{b}}(1 P) \pi$	$\mathrm{h}_{\mathrm{b}}(2 P) \pi$	Total
$M_{\text {th }}$	9600	10163	10495	10038	10399	\ldots
g_{n}	1986	844	956	7392	14179	\ldots
δM	6.3	0.5	-1.3	-0.1	-3.0	2.4

3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$ hadronic molecule interpretation

Other effects?

(2) Triangle diagram effect (decay width)
S. Ohkoda, S. Yasui, and A. Hosaka, Phys. Rev. D 89, 074029 (2014) BB^{*} bar or $\mathrm{B}^{*} \mathrm{~B}^{* b a r}$ merging into the final state Y

Z_{b} 's dissociation into BB^{*} bar or $\mathrm{B}^{*} \mathrm{~B}^{*}$ bar (form factor with cutoff \wedge_{z})

	$Z_{b}(10610)$ decay width					[MeV]	$Z_{b}(10650)$				decay width [MeV]		
$\underline{\Lambda_{Z}}$		1000	1050	1100	1150	Expt.	Λ_{Z}	\ldots	1000	1050	1100	1150	Expt.
$\Upsilon(1 S) \pi^{+}$	96.3	0.074	0.079	0.083	0.087	0.059 ± 0.017	$\Upsilon(1 S) \pi^{+}$	71.3	0.044	0.046	0.049	0.051	0.028 ± 0.008
$\Upsilon(2 S) \pi^{+}$	20.0	0.47	0.50	0.52	0.55	0.81 ± 0.22	$\Upsilon(2 S) \pi^{+}$	17.6	0.31	0.33	0.34	0.36	0.28 ± 0.07
$\Upsilon(3 S) \pi^{+}$	0.498	0.14	0.14	0.15	0.15	0.40 ± 0.10	$\Upsilon(3 S) \pi^{+}$	0.858	0.18	0.19	0.20	0.21	0.19 ± 0.05

It seems consistent with experiments.
3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$
hadronic molecule internretation
(3) Radiative decay ($\mathrm{I}_{\mathrm{z}}=0$) MeV

A. E. Bondar, A. Garmash, A. I. Milstein, R. Mizuk, and M. B. Voloshin, Phys. Rev. D84, 054010 (2011)
M. B. Voloshin, Phys. Rev. D 84, 031502 (2011)
S. Ohkoda, S. Yasui, and A. Hosaka, Phys. Rev. D 89, 074029 (2014)
3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{b}(10610)^{+} \& Z_{b}(10650)^{+}$
hadronic molecule internretation
(3) Radiative decay ($\left.\mathrm{I}_{2}=0\right)$ MeV^{\square}

$$
\begin{aligned}
& \left|Z_{b}(10610)\right\rangle \simeq\left|B \bar{B}^{*}\right\rangle=\frac{1}{\sqrt{2}}\left|0_{H}^{-} \otimes 1_{l}^{-}\right\rangle-\frac{1}{\sqrt{2}}\left|1_{H}^{-} \otimes 0_{l}^{-}\right\rangle \\
& \left|Z_{b}(10650)\right\rangle \simeq\left|B^{*} \bar{B}^{*}\right\rangle=\frac{1}{\sqrt{2}}\left|0_{H}^{-} \otimes 1_{l}^{-}\right\rangle+\frac{1}{\sqrt{2}}\left|1_{H}^{-} \otimes 0_{l}^{-}\right\rangle
\end{aligned}
$$

[^1]3. Heavy exotic hadrons -X, Y, Z hadrons-
3. Heavy exotic hadrons -X, Y, Z hadrons-

Pentaquark

3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
\begin{aligned}
& P_{c}(4380) \\
& P_{c}(4450)
\end{aligned}
$$

3. Heavy exotic hadrons -X, Y, Z hadrons$P_{c}(4380) \& P_{c}(4450)$ first charm pentaquark

NEWS

Forsaken pentaquark 2015 particle spotted at CERN

Exotic subatomic species confirmed at Large Hadron Collider after earlier false sightings.

ay matthew Chaimers

A
n exotic particle made up of five quarks has been found a decade after experi ments seemed to rule out its existence. The short-lived 'pentaquark' was spotted y researchers analysing data on the decay of unstable particles in the LHCb experiFRN Wuron's particl Collder (LHC) a CERN, Europes partacle- physics laboratory near Genevz, The finding, says LFiCb spokeserson Guy Wilkinson, opens a new era in | Phyzes| Scl-Nems com
he rich testing grounds for quantum chromodynamics (QCD) - the theory that describes the forces that hold quarks together In 2002, researchers at the SPring - 8 synchrotron in Harima, Japan, caused a stir when they announced that they had discovered a pentaquark, roughly 1.5 times heavier than a proton, inferring its existence from the debris of collissons between high-energy photons and neutrons. Within a year, more than ten other tide by reanalysing dats evidence for the par ticle by reanalysing data. But many others saw no evidence for such a state and, in 2005,

16 IULY 2015 I YOL 523 I NATVRE 267

Large Hadron Collider discovers

 pentaquark particle
By Paul Rincon

Science editor, BBC News website

14 July 2015 Science \& Environment

CERN Physicists Confirm Existence

of Pentaquark Particles

Observation of $J / \psi p$ resonances consistent with pentaquark states in $\Lambda_{b}^{0} \rightarrow J / \psi K^{-} p$ decays

The LHCb collaboration ${ }^{1}$

Abstract

Observations of exotic structures in the $J / \psi p$ channel, that we refer to as pentaquarkcharmonium states, in $\Lambda_{b}^{0} \rightarrow J / \psi K^{-} p$ decays are presented. The data sample corresponds to an integrated luminosity of $3 \mathrm{fb}^{-1}$ acquired with the LHCb detector from 7 and $8 \mathrm{TeV} p p$ collisions. An amplitude analysis is performed on the three-body final-state that reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the $J / \psi p$ mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of $4380 \pm 8 \pm 29 \mathrm{MeV}$ and a width of $205 \pm 18 \pm 86 \mathrm{MeV}$, while the second is narrower, with a mass of $4449.8 \pm 1.7 \pm 2.5 \mathrm{MeV}$ and a width of $39 \pm 5 \pm 19 \mathrm{MeV}$. The preferred J^{P} assignments are of opposite parity, with one state having spin $3 / 2$ and the other $5 / 2$.

3. Heavy exotic hadrons -X, Y, Z hadrons$P_{c}(4380) \& P_{c}(4450)$
first charm pentaquark

$$
\Lambda_{b}^{0}
$$

$$
\rightarrow \underline{J / \psi} \underline{\underline{K^{-}} \underline{\underline{p}}}
$$

State	J^{P}	$M_{0}(\mathrm{MeV})$	$\Gamma_{0}(\mathrm{MeV})$
$\Lambda(1405)$	$1 / 2^{-}$	$1405.1_{-1.0}^{+1.3}$	50.5 ± 2.0
$\Lambda(1520)$	$3 / 2^{-}$	1519.5 ± 1.0	15.6 ± 1.0
$\Lambda(1600)$	$1 / 2^{+}$	1600	150
$\Lambda(1670)$	$1 / 2^{-}$	1670	35
$\Lambda(1690)$	$3 / 2^{-}$	1690	60
$\Lambda(1800)$	$1 / 2^{-}$	1800	300
$\Lambda(1810)$	$1 / 2^{+}$	1810	150
$\Lambda(1820)$	$5 / 2^{+}$	1820	80
$\Lambda(1830)$	$5 / 2^{-}$	1830	95
$\Lambda(1890)$	$3 / 2^{+}$	1890	100
$\Lambda(2100)$	$7 / 2^{-}$	2100	200
$\Lambda(2110)$	$5 / 2^{+}$	2110	200
$\Lambda(2350)$	$9 / 2^{+}$	2350	150
$\Lambda(2585)$	$?$	≈ 2585	200

3. Heavy exotic hadrons -X, Y, Z hadrons-

Figure 3: Fit projecti (see Table 1). The $\mathrm{d} \varepsilon$ results of the fit. Th $\stackrel{\sim}{5}$ squares with the she topped with (purple shown. The error ba

Figure 6: Results for (a) $m_{K p}$ and (b) $m_{J / \psi p}$ for the extended Λ^{*} model fit without ${ }_{P}^{117}$ states.

3. Heavy exotic hadrons -X, Y, Z hadrons-

Argand Plo†

Figure 9: Fitted values of the real and imaginary parts of the amplitudes for the baseline ($3 / 2^{-}$, $5 / 2^{+}$) fit for a) the $P_{c}(4450)^{+}$state and b) the $P_{c}(4380)^{+}$state, each divided into six $m_{J / \psi p}$ bins of equal width between $-\Gamma_{0}$ and $+\Gamma_{0}$ shown in the Argand diagrams as connected points with error bars ($m_{J / \psi p}$ increases counterclockwise). The solid (red) curves are the predictions from the Breit-Wigner formula for the same mass ranges with $M_{0}\left(\Gamma_{0}\right)$ of 4450 (39) MeV and 4380 (205) MeV , respectively, with the phases and magnitudes at the resonance masses set to the average values between the two points around M_{0}. The phase convention sets $B_{0, \frac{1}{2}}=(1,0)$ for $\Lambda(1520)$. Systematic uncertainties are not included.

Thresholds of hadron states above 4 GeV

Thresholds of hadron states above 4 GeV

Thresholds of hadron states above 4 GeV

4000

3090

P_{c} should contain at least

So, what is the structure?

1. Pentaquark

Quark spin/orbital excitations Inter-quark correlations (diquarks)
2. Hadronic molecule Inter-hadron correlations

3. Cusp effect

Kinematic anomaly

> 4. Other things?

1. Pentaquark
 Quark spin/orbital excitations Inter-quark correlations (diquarks)

Skyrmermadelisparantysrors hatateary quarkonium states - $c \bar{c}$ and $b \bar{b}$ - form bound states with nuclei [1]. Although the approximations used to estimate the effective low energy QCD Van der Waals force in ref. [1] have been criticized as leading to a large overestimate of the strength of the interaction [2], the original suggestion has been substantiated by the observation that in the infinite mass limit for the heavy quark the actual binding energy of quarkonium in nuclear matter can be obtained exactly in QCD [3]. To get another perspective on this interesting possibility for a new type of baryonic matter we here investigate the question of bound states of quarkonium with nucleons using the bound state

1. What is c \bar{c}-nucleon interaction?

Color van der Waals force, Scale anomaly
to the question at hand.
The virtue of the bound state version of the topological soliton model is that its form applies to all heavy flavour sectors, the only difference between the sectors being the different flavour quantum numbers and the masses and decay constants of the different heavy flavour mesons. Thus the interaction between the nucleons and the η, the $\eta_{c}(2980)$ and the η_{t} (unobserved) should have the same flymmithe (nucleon) strength of this interaction is dete m: -d by the fact that there should be no bound a idenced by the $N(1535)$ resonance, cays into the ηN channel and the ηN threshold. We hrere sh.
y delbove

$$
\begin{array}{rlrl}
\mathscr{L}= & -\frac{1}{4} f_{\pi}^{2} \operatorname{Tr}\left(L_{\mu} L^{\mu}\right)+\frac{x}{32 \varepsilon^{2}} \operatorname{Tr}\left[L_{\mu}, L_{\nu}\right]^{2} & & \text { Gobbi, Riska, Nucl. Phys. A568, 779 (1994) } \\
& +\frac{1-x}{16 \varepsilon^{2}}\left\{\left(\operatorname{Tr} L_{\mu} L_{\nu}\right)^{2}-\left(\operatorname{Tr} L_{\mu} L^{\mu}\right)^{2}\right\}, & & U=\sqrt{U_{\mathbf{H}}} U_{\pi} \sqrt{U_{\mathbf{H}}} \\
& & U_{\mathbf{H}}=\mathrm{e}^{i\left(\lambda_{0} \eta_{0}+\lambda_{8} \eta_{8}\right) / f_{\eta}}
\end{array}
$$

$\mathrm{N}_{\mathrm{c} \overline{\mathrm{c}}}$ mass estimated to be 2800 MeV (too light?) Binding energy ~ 1300 MeV (!)

What is the QCD mechanism to prevent the too-deeply bound state?

SKyrnner Whasimerapnlis pu*tikhtly strong that heavy

 quarkonium states - $c \bar{c}$ and $b \bar{b}$ - form bound states with nuclei [1]. Although the approximations used to estimate the effective low energy QCD Van der Waals force in ref. [1] have been criticized as leading to a large overestimate of the strength of the interaction [2], the original suggestion has been substantiated by the observation that in the infinite mass limit for the heavy quark the actual binding energy of quarkonium in nuclear matter can be obtained exactly in QCD [3]. To get another perspective on this interesting possibility for a new type of baryonic matter we here investigate the question of bound states of quarkonium with nucleons using the bound stateto the question at hand.
The virtue of the bound state version of the topological soliton model is that its form applies to all heavy flavour sectors, the only difference between the sectors being the different flavour quantum numbers and the masses and decay constants of the different heavy flavour mesons. Thus the interaction between the nucleons and the η, the $\eta_{c}(2980)$ and the η_{t} (unobserved) should have the same fleyminishe (nucleon) strength of this interaction is dete m : od by the fact that there should be no bound $-\quad$ idenced by the $N(1535)$ resonance, cays into the ηN channel and the ηN threshold. We here sh

$J / \psi, \eta_{c}$-nucleon potential from lattice QCD

Sugiura, Ikeda, Ishii, arXix:1905.02336 [hep-lat]

Diquark model

Q. Why is the mass difference between $\mathrm{P}_{\mathrm{c}}(4380)$ and $\mathrm{P}_{\mathrm{c}}(4450)$ small ($\sim 70 \mathrm{MeV}$)?

$P\left(3 / 2^{-}\right)=\left\{\bar{c}[c q]_{s=1}\left[q^{\prime} q^{\prime \prime}\right]_{s=1}, L=0\right\} \quad P\left(5 / 2^{+}\right)=\left\{\bar{c}[c q]_{s=1}\left[q^{\prime} q^{\prime \prime}\right]_{s=0}, L=1\right\}$
Opposite parity \rightarrow Angular-momentum excitation
~ 500 MeV mass difference

N(1535) 1/2-

Diquark model

Q. Why is the mass difference between $\mathrm{P}_{\mathrm{c}}(4380)$ and $\mathrm{P}_{\mathrm{c}}(4450)$ small ($\left.\sim 70 \mathrm{MeV}\right)$?

$P\left(3 / 2^{-}\right)=\left\{\bar{c}[c q]_{s=1}\left[q^{\prime} q^{\prime \prime}\right]_{s=1}, L=0\right\} \quad P\left(5 / 2^{+}\right)=\left\{\bar{c}[c q]_{s=1}\left[q^{\prime} q^{\prime \prime}\right]_{s=0}, L=1\right\}$
$M\left(5 / 2^{+}\right)-M\left(3 / 2^{-}\right)=\Delta M_{\text {spin }}+\Delta M_{\text {anglular momentum }}$

Diquark model

Q. Why is the mass difference between $\mathrm{P}_{\mathrm{c}}(4380)$ and $\mathrm{P}_{\mathrm{c}}(4450)$ small ($\left.\sim 70 \mathrm{MeV}\right)$?

$P\left(3 / 2^{-}\right)=\left\{{ }^{-}[c q]_{s=1}\left[q^{\prime} q^{\prime \prime}\right]_{s=1}, L=0\right\} \quad P\left(5 / 2^{+}\right)=\left\{\bar{c}[c q]_{s=1}\left[q^{\prime} q^{\prime \prime}\right]_{s=0}, L=1\right\}$
$M\left(5 / 2^{+}\right)-M\left(3 / 2^{-}\right)=\Delta M_{\text {spin }}+\Delta M_{\text {anglular momentum }}$

$$
\begin{aligned}
& =(-200 \mathrm{MeV})+300 \mathrm{MeV} \\
& \Sigma_{\mathrm{c}}(2455)-\Lambda_{\mathrm{c}}(2286) \simeq 170 \mathrm{MeV} \Lambda(1405)-\Lambda(1116) \sim 290 \mathrm{MeV} \\
& c(q 9)_{s=1} \quad c(q q)_{s=0} \quad(u d s)_{L=1} \quad(u d s)_{L=0}
\end{aligned}
$$

Diquark model

Q. Why is the mass difference between $P_{c}(4380)$ and $P_{C}(4450)$ small ($\left.\sim 70 \mathrm{MeV}\right)$?

$P\left(3 / 2^{-}\right)=\left\{{ }^{-}[c q]_{s=1}\left[q^{\prime} q^{\prime \prime}\right]_{s=1}, L=0\right\} \quad P\left(5 / 2^{+}\right)=\left\{\bar{c}[c q]_{s=1}\left[q^{\prime} q^{\prime \prime}\right]_{s=0}, L=1\right\}$
$M\left(5 / 2^{+}\right)-M\left(3 / 2^{-}\right)=\Delta M_{\text {spin }}+\Delta M_{\text {anglular momentum }}$

$$
\begin{aligned}
& =(-200 \mathrm{MeV})+300 \mathrm{MeV} \\
& \Sigma_{\mathrm{c}}(2455)-\Lambda_{\mathrm{c}}(2286) \simeq 170 \mathrm{MeV} \wedge(1405)-\Lambda(1116) \sim 290 \mathrm{MeV} \\
& c(q q)_{s=1} \quad c(q q)_{s=0} \quad(u d s)_{L=1} \quad(u d s)_{L=0} \\
& =100 \mathrm{MeV}(\sim 70 \mathrm{MeV})
\end{aligned}
$$

Diquark model

Q. Why is the mass difference between $\mathrm{P}_{\mathrm{c}}(4380)$ and $\mathrm{P}_{\mathrm{c}}(4450)$ small ($\left.\sim 70 \mathrm{MeV}\right)$?

$P\left(3 / 2^{-}\right)=\left\{\bar{c}[c q]_{s=1}\left[q^{\prime} q^{\prime \prime}\right]_{s=1}, L=0\right\} \quad P\left(5 / 2^{+}\right)=\left\{\bar{c}[c q]_{s=1}\left[q^{\prime} q^{\prime \prime}\right]_{s=0}, L=1\right\}$

If this is true, we can make an extension from SU(2) flavor symmetry to $\mathrm{SU}(3)$.

$$
\begin{aligned}
\mathrm{P}_{\mathrm{A}} & =\epsilon^{\alpha \beta \gamma}\left\{\bar{c}_{\alpha}[\mathrm{cq}]_{\beta, s=0,1}\left[\mathrm{q}^{\prime} \mathrm{q}^{\prime \prime}\right]_{\mathrm{Y}, \mathrm{~s}=0}, \mathrm{~L}\right\} \\
& =3 \otimes \overline{3}=1 \oplus 8 \\
\mathrm{P}_{\mathrm{S}} & =\epsilon^{\alpha \beta \gamma}\left\{\bar{c}_{\alpha}[\mathrm{cq}]_{\beta, s=0,1}\left[\mathrm{q}^{\prime \prime} \mathrm{q}^{\prime \prime}\right]_{Y, s=1}, \mathrm{~L}\right\} \\
& =3 \otimes 6=8 \oplus 10
\end{aligned}
$$

Quark model calculation

$$
\begin{aligned}
& H=\sum_{i} T_{i}-T_{G}+\sum_{i, j} V_{i j} \\
& V_{i j}= \begin{cases}V_{i j}^{O G E}+V_{i j}^{c o n f}+\sum_{M} V_{i j}^{M}, & (i j=q q) \\
V_{i j}^{O G E}+V_{i j}^{\text {conf }}, & (i j=q Q, q \bar{Q}, Q \bar{Q})\end{cases}
\end{aligned}
$$

$$
\sum_{\beta^{\prime}} \int\left[H_{\beta \beta^{\prime}}\left(\mathrm{R}, \mathrm{R}^{\prime}\right)-E N_{\beta \beta^{\prime}}\left(\mathrm{R}, \mathrm{R}^{\prime}\right)\right] X_{\beta^{\prime}}\left(\mathrm{R}^{\prime}\right) \mathrm{d} \mathrm{R}^{\prime}=0
$$

mass: 4.279-4.316 GeV very good agreement wiffsLLHCb!

2. Hadronic molecule Inter-hadron correlations

Meson-baryon coupling model

 $\eta^{\prime} N, \eta_{c} N, D \bar{\Sigma}_{c}, D \bar{\lambda}_{c}$Hofmann, Lutz, Nucl. Phys. A763, 90 (2005)

Lagrangian with Flavor SU(4) symmetry

$$
\begin{aligned}
& \mathrm{L}_{\text {kin }}^{\text {su }(4)}=\frac{1}{4} \sum_{\mathrm{i}, \mathrm{j}=1}^{4}\left(\left(\partial_{\mu} \Phi_{[16], \mathrm{j}}\right)\left(\partial^{\mu} \Phi_{[16], \mathrm{i}}\right)-\mathrm{m}_{[16]}^{2} \Phi_{[66], \mathrm{j}}^{[} \Phi_{[16], \mathrm{i}}\right) \\
& +\frac{1}{2} \sum_{i, j, k=1}^{4} B_{i j k}^{[20]}(i \not \partial-M[20]) B_{[20]}^{i j k} . \\
& L_{\text {int }}^{\text {su(4) }}=\frac{i}{4} g \operatorname{tr}\left(\left[\left(\partial_{\mu} \Phi_{[16]}\right), \Phi_{[16]}\right] V_{[16]}^{\mu}\right) \\
& \text { Coupled-channel equation } \\
& M^{(1, s, c)}(\sqrt{\sqrt{s}} \bar{s})=\left[1-V^{(1, s, c)}(\sqrt{v} \bar{s}) J^{(1, s, c)}(\sqrt{\sqrt{s}} \bar{s})\right]^{-1} V^{(1, s, c)}\left(V^{\sqrt{s}}\right)
\end{aligned}
$$

$\overline{\mathrm{D}} \mathrm{\Sigma}_{\mathrm{c}}, \mathrm{D} \bar{\Sigma}_{\mathrm{c}}{ }^{*}, \mathrm{D} \overline{\mathrm{C}}_{\mathrm{c}}$

Wu, Molina, Oset, Zou, Phys. Rev. Lett. 105232001 (2010), Phys. Rev. C84 015202 (2011)

$$
\begin{aligned}
L_{V \vee V}= & i g\left\langle V^{\mu}\left[V^{v}, \partial_{\mu} V_{v}\right]\right\rangle \\
L_{P P V}= & -i g\left\langle V^{\mu}\left[P, \partial_{\mu} P\right]\right\rangle \\
L_{B B V}= & g\left(\left\langle B Y_{\mu}\left[V^{\mu}, B\right]\right\rangle+\left\langle\bar{B} Y_{\mu} B\right\rangle\left\langle V^{\mu}\right\rangle\right) \\
& T=[1-V G]^{-1} V
\end{aligned}
$$

Very good agreement with LHCb!

(I, S)	$\mathrm{z}_{\mathrm{R}}(\mathrm{MeV})$	g_{a}		
$(1 / 2,0)$		$\mathrm{D}^{*} \Sigma_{\mathrm{c}}$	$\mathrm{D}^{*} \Lambda_{\mathrm{c}}^{+}$	
	4418	$\underline{2} .75$	-0	
$(0,-1)$		$\mathrm{D}_{\mathrm{s}}^{*} \Lambda_{\mathrm{c}}^{+}$	$\mathrm{D}^{*} \bar{\Xi}_{\mathrm{c}}$	$\mathrm{D}^{*} \bar{\Xi}_{\mathrm{c}}$
	4370	1.23	3.14	0
	4550	0	0	2.53

TABLE IV: Pole position and coupling constants for the bound states from $V B \rightarrow V B$.

$\frac{(\mathrm{I}, \mathrm{~S})}{(1 / 2,0)}$	M	Γ	Γ_{i}					
			$\mathrm{\rho N}$	$\omega \mathrm{N}$	K * Σ	$\begin{gathered} \mathrm{J} / \mathrm{\mu N} \mathrm{~N} \\ 19.2 \end{gathered}$		
	4412	47.3	3.2	10.4	13.7			
(0, - 1)			$\mathrm{K}^{*} \mathrm{~N}$	$\rho \Sigma$	$\omega /$	$\varphi \wedge$	K ${ }^{*}$ 三	JT/
	4368	28.0	13.9	3.1	0.3	4.0	1.8	5.4
	4544	36.6	0	8.8	9.1	0	5.0	13.8

TABLE VI: Mass (M), total width (Γ), and the partial decay width (Γ_{i}) for the states from $V B \rightarrow V B$ with units in $M e V$.

Meson-baryon coupling model

Garcia-Recio, Nieves, Romanetz, Salcedo, Tolos, Phys. Rev. D87, 074034 (2013)

- -

$\cdots-\Delta,\left(\mathbf{1 0}_{4}\right)_{2,0} \subset 5_{2,0}, \mathrm{~J}=\mathbf{1} / \mathbf{2}$, weakly bound
$\leftarrow \Delta,\left(10_{2}\right)_{2,0} \subset 70_{2,0}, \mathrm{~J}=3 / 2$
$\rightarrow \Delta,\left(\mathbf{1 0}_{2}\right)_{2,0} \subset 70_{2,0}, \mathrm{~J}=\mathbf{1 / 2}$
$=\mathbf{N},\left(\mathbf{8}_{\mathbf{4}}\right)_{\mathbf{2 , 0}} \subset \mathbf{7 0}_{\mathbf{2 , 0}}, \mathrm{J}=\mathbf{5} / \mathbf{2}$
$\mp \mathbf{N},\left(\mathbf{8}_{4}\right)_{2,0} \subset \mathbf{7 0}_{\mathbf{2}, 0}, \mathrm{~J}=\mathbf{3} / \mathbf{2}$
$\mp \mathrm{N},\left(\mathbf{8}_{2}\right)_{2,0} \subset \mathbf{7 0}_{\mathbf{2 , 0}}, \mathrm{J}=\mathbf{3} / \mathbf{2}$
$\longrightarrow \mathbf{N},\left(\mathbf{8}_{\mathbf{4}}\right)_{2,0} \subset \mathbf{7 0}_{\mathbf{2}, 0}, \mathrm{~J}=\mathbf{1 / 2}$
Many states around $4 \mathrm{GeV}^{-\mathbf{N},\left(\mathbf{8}_{\mathbf{2}}\right)_{\mathbf{2}, \mathbf{0}} \subset \mathbf{7 0}_{\mathbf{2}, \mathbf{0}}, \mathbf{J}=\mathbf{1 / 2}, \mathbf{2}}$
--- Thresholds
$-\circlearrowleft=\left(\mathbf{1 0}_{\mathbf{4}}\right)_{\mathbf{2}, 0} \subset \mathbf{5 6}_{\mathbf{2}, \mathbf{0}}$, weakly bound
$\sim\left(\mathbf{1 0}_{\mathbf{2}}\right)_{2,0} \subset \mathbf{7 0}_{\mathbf{2}, 0}$
-® $=\left(\mathbf{8}_{\mathbf{2}} \mathbf{2}_{\mathbf{2}, 0} \subset \mathbf{5 6}_{\mathbf{2}, 0}\right.$, weakly bound
$\sim\left(\mathbf{8}_{4}\right)_{\mathbf{2}, \mathbf{0}} \subset \mathbf{7 0}_{\mathbf{2}, 0}$

Meson-baryon coupling model $\overline{\Sigma_{c}}{ }_{c} D^{*} \bar{\Sigma}_{c}, D \bar{\Sigma}_{c}{ }^{*}, D^{*} \bar{\Sigma}_{c}{ }^{*}$

QCD sum rule

$$
\begin{aligned}
J_{\{\nu \psi\}}^{\bar{D}^{*} \Sigma_{c}^{*}} & =\left[\bar{c}_{d} \gamma_{\mu} d_{d}\right]\left[\epsilon_{a b c}\left(u_{a}^{T} C \gamma_{\nu} u_{b}\right) \gamma_{5} c_{c}\right]+\{\mu \leftrightarrow \nu\}, \\
J_{\langle\{v\}}^{\bar{D} \Sigma_{c}^{*}} & =\left[\bar{c}_{d} \gamma_{\mu} \gamma_{5} d_{d}\right]\left[\epsilon_{a b c}\left(u_{a}^{T} C \gamma_{\nu} u_{b}\right) c_{c}\right]+\{\mu \leftrightarrow \nu\}, \\
J_{\{\mu \nu\}}^{\bar{D}^{*} \Lambda_{c}} & =\left[\bar{c}_{d} \gamma_{\mu} u_{d}\right]\left[\epsilon_{a b c}\left(u_{a}^{T} C \gamma_{\nu} \gamma_{5} d_{b}\right) c_{c}\right]+\{\mu \leftrightarrow \nu\},
\end{aligned}
$$

FIG. 1: The variation of $M_{\left[\bar{D}^{*} \Sigma_{c}\right], 3 / 2^{-}}$with respect to the threshold value s_{0} (left) and the Borel mass M_{B} (right). In the left figure, the long-dashed, solid and short-dashed curves are obtained by fixing $M_{B}^{2}=3.9,4.1$ and $4.3 \mathrm{GeV}^{2}$, respectively. In the right figure, the long-dashed, solid and short-dashed curves are obtained for $s_{0}=19$, 21 and $23 \mathrm{GeV}^{2}$, respectively.

Very good agreement with LHCb!

$$
M_{\left[\bar{D}^{*} \Sigma_{c}\right], 3 / 2^{-}}=4.37_{-0.12}^{+0.18} \mathrm{GeV}
$$

$$
M_{\left[\bar{B}^{\star} \Sigma_{b}\right], 3 / 2^{-}}=11.55_{-0.14}^{+0.23} \mathrm{GeV}
$$

$$
M_{\left[\bar{B} E{ }_{b}^{*} \& \bar{B}^{*} \wedge\right.} \Lambda_{b}, 5 / 2^{+}=11.66_{-0.27}^{+0.28} \mathrm{GeV}
$$

3. Cusp effect
 Kinematic anomaly

Anomalous triangle singularity
Liu, Wang, Zhao, Phys. Lett. B757 (2016) 231

4. Other things?

3. Heavy exotic hadrons -X, Y, Z hadrons-

 Recent experimentsLHCb, Phys.Rev.Lett.115, 072001 (2015)

LHCb, Phys.Rev.Lett.122, 222001 (2019)

Three peak states $\mathrm{P}_{\mathrm{c}}(4380) \Gamma \sim 200 \mathrm{MeV}$ (very large)

$$
\begin{array}{|ll|}
\hline P_{c}(4312)^{+}: & M=\left(4311.9 \pm 0.7_{-0.6}^{+6.8}\right) \mathrm{MeV}, \Gamma=\left(9.8 \pm 2.7_{-4.5}^{+3.7}\right) \mathrm{MeV}, \\
P_{c}(4440)^{+}: & M=\left(4440.3 \pm 1.3_{-4.7}^{+4 .}\right) \mathrm{MeV}, \Gamma=\left(20.6 \pm 4.9_{-10.1}^{+8.7}\right) \mathrm{MeV}, \\
P_{c}(4457)^{+}: & M=\left(4457.3 \pm 0.6_{-1.7}^{+4.1}\right) \mathrm{MeV}, \Gamma=\left(6.4 \pm 2.0_{-1.9}^{+5.7}\right) \mathrm{MeV}
\end{array}
$$

Brambilla et al. Phys. Rep. 873 (2020) 1

3. Heavy exotic hadrons -X, Y, Z hadrons-

π exchange pot. + short-range int.

Y. Yamaguchi et al., Phys. Rev. D96, 114031 (2017)
Y. Yaamguchi et al. Phys. Rev. D101 (2020) 091502

Cf. Y. Shmizu, Y. Yamaguchi, M. Harada, Phys. Rev. D98, 014021 (2018)
Y. Shimizu, Y. Yamaguchi, M. Harada, PTEP2019 (2019) 123D01
Y. Shimizu, Y. Yamaguchi, M. Harada, arXiv:1904.00587 [hep-ph]
3. Heavy exotic hadrons -X, Y, Z hadrons-

Aren't there more charm pentaquarks?

Yes, there are more!

3. Heavy exotic hadrons -X, Y, Z hadrons-

LHCb, Phys. Rev. Lett. 128 (2022) 062001

$$
P_{C}(4338) \underset{\text { positive parity (new) }}{\mathrm{J}=1 / 2^{+}}
$$

5
0
0
0
0
0
0
0
0
0
0
0

$$
\begin{aligned}
M_{P_{c}} & =4337_{-4}^{+7}+2 \mathrm{MeV} \\
\Gamma_{P_{c}} & =29_{-12}^{+26}{ }_{-14}^{+14} \mathrm{MeV}
\end{aligned}
$$

$\Sigma_{c}{ }^{*} D^{\text {bar }}$ dynamics (p -wave) may be relevant...
3. Heavy exotic hadrons -X, Y, Z hadrons-Charm-strange pentaquark?

$$
P_{c s}(u d s c \bar{c})
$$

Flavor Octet

$$
(I=1 / 2)
$$

P
CS

Flavor Single† ($\mathrm{I}=0$)
color octet

Brief summary of quark model

Three quarks in SU(6) flavor+spin symmetry
$6 \times 6 \times 6=20_{\mathrm{A}}+70_{\mathrm{MA}}+70_{\mathrm{MS}}+56_{\mathrm{S}}$
$S U(6)_{\text {fiavortssiin }}$ representation $\left\{\begin{array}{l}\mathbf{2 0}=(\mathbf{8}, 2)+(\mathbf{1}, 4), \\ \mathbf{7 0}=(8,4)+(\mathbf{1 0}, 2)+(8,2)+(1,2), \\ \mathbf{5 6}=(\mathbf{1 0}, 4)+(\mathbf{8}, 2),\end{array}\right.$
Three quarks in SU(3) color symmetry
$3 \times 3 \times 3=1_{\mathrm{A}}+8_{\mathrm{MA}}+8_{\mathrm{MS}}+10_{\mathrm{S}}$

Totally antisymmetric representation (fermion systems)
A: antisymmetric
S : symmetric
MA: mixed-antisymmetric
MS: mixed-symmetric

Brief summary of quark model

Three quarks in SU(6) flavor+spin symmetry

$$
6 \times 6 \times 6=20_{\mathrm{A}}+\left(70_{\mathrm{MA}}\right)+70_{\mathrm{MS}}+56_{\mathrm{S}}
$$

SU(6) Ifovortssin representation $\left\{\begin{array}{l}20=(8,2)+(1,4), \quad \text { Colored gq9 } \\ 70=(8,4)+(10,2)+(8,2)+(1,2), \\ 56=(10,4)+(8,2), \quad \text { Lowest-dimension: }\end{array}\right.$ Mostly attractive in color-spin int.
Three quarks in SU(3) color symmetry
$3 \times 3 \times 3=1_{\mathrm{A}}+8_{\mathrm{MA}}+8_{\mathrm{MS}}+10_{\mathrm{S}}$

Totally antisymmetric representation (fermion systems)
A: antisymmetric
S: symmetric
MA: mixed-antisymmetric
MS: mixed-symmetric

$$
\psi=\phi\left(\boldsymbol{R}, \boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{r}_{3}\right) \psi_{c \bar{c}}^{s, c} \psi_{u d s}^{s, c, f}
$$

$$
\varphi\left(R, r_{1}, r_{2}, r_{3}\right)=\frac{1}{\left(2 \hat{i} a^{2}\right)^{\frac{3}{4}}} \frac{1}{\left(\hat{i} b^{2}\right)^{\frac{9}{4}}} \exp -\frac{|R|^{2}}{4 a^{2}}-\frac{\left|r_{1}\right|^{2}+\left|r_{2}\right|^{2}+\left|r_{3}\right|^{2}}{2 b^{2}}
$$

Y. Irie, M. Oka, S.Y., Phys. Rev. D97, 034006 (2018)

Quark model

 (5-body system)

baryon	model A	model B	experiments [24]
$N\left(1 / 2^{+}\right)$	1048	1019	939
$\Delta\left(3 / 2^{+}\right)$	1247	1220	1232
$\Lambda\left(1 / 2^{+}\right)$	1116	1116	1116
$\Sigma\left(1 / 2^{+}\right)$	1193	1193	1193
$\Sigma^{*}\left(3 / 2^{+}\right)$	1330	1327	1385

$$
K=-\frac{\boldsymbol{\nabla}_{R}^{2}}{2 \mu_{c \bar{c}}}-\frac{\boldsymbol{\nabla}_{1}^{2}}{2 m_{1}}-\frac{\boldsymbol{\nabla}_{3}^{2}}{2 m_{2}}-\frac{\boldsymbol{\nabla}_{3}^{2}}{2 m_{3}},
$$

$V_{\text {Coulomb }}=\sum_{i<j} \frac{\alpha_{s}}{4 r_{i j}} \boldsymbol{\lambda}_{i} \cdot \boldsymbol{\lambda}_{j}$,

model A

+

$$
\begin{aligned}
& V_{\mathrm{CMI}}=-\frac{\alpha_{s}}{4} \sum_{i<j} \frac{\pi}{m_{i} m_{j}} \boldsymbol{\lambda}_{i} \cdot \boldsymbol{\lambda}_{j}\left(1+\frac{2}{3} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}\right)^{(\text {conventional int.) }} \delta^{(3)}\left(r_{i j}\right), \\
& V_{\mathrm{conf}}
\end{aligned}=-\sigma \sum_{i<j} \boldsymbol{\lambda}_{i} \cdot \boldsymbol{\lambda}_{j} r_{i j}, ~ l
$$

$V_{\mathrm{III} 2}=U_{0}^{(2)} \frac{15}{8} \sum_{i<j} \mathcal{A}_{2}^{f} \frac{1}{m_{i} m_{j}}\left(1-\frac{1}{5} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}\right) \delta^{(3)}\left(r_{i j}\right)$,
model B
$V_{\mathrm{III} 3}=V_{0} \frac{189}{40} \sum_{(i j k)} \mathcal{A}_{3}^{f}\left(1-\frac{1}{7}\left(\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}+\boldsymbol{\sigma}_{j} \cdot \boldsymbol{\sigma}_{k}+\boldsymbol{\sigma}_{k} \cdot \boldsymbol{\sigma}_{i}\right)\right) \delta^{(3)}\left(r_{i j}\right) \delta^{(3)}\left(r_{j k}\right)$,

	model A	model B
$m_{u}[\mathrm{MeV}]$	313	313
$m_{s}[\mathrm{MeV}]$	521.7	521.7
$m_{c}[\mathrm{MeV}]$	1497.4	1497.4
$\alpha_{s 1}$	0.769	0.715
$\alpha_{s 2}$	0.5461	0.5461
$\sigma_{1}[\mathrm{MeV} / \mathrm{fm}]$	178	178
$\sigma_{2}[\mathrm{MeV} / \mathrm{fm}]$	135.63	135.63
$C_{\Lambda}[\mathrm{MeV}]$	-1130	-1470
$C_{\eta_{c}}[\mathrm{MeV}]$	-61	-61
$U_{0}^{(2)}$	-	-1.331
$V_{0}\left[\mathrm{MeV}{ }^{-5}\right]$	-	5.271×10^{-13}
$p(\mathrm{~L}-\mathrm{L})$	-	0.4
$p(\mathrm{H}-\mathrm{H}, \mathrm{H}-\mathrm{L})$	-	0

3. Heavy exotic hadrons -X, Y, Z hadrons-

LHCb, Sci. Bull. 66 (2021) 1278

$$
B^{-} \rightarrow J / \psi \Lambda \bar{p}
$$

State	$M_{0}(\mathrm{MeV})$	$\Gamma_{0}(\mathrm{MeV})$	FF (\%)	
$P_{\text {cs }}(4459)^{0}$	$4458.8 \pm 2.9_{-1.1}^{+4.7}$	$17.3 \pm 6.5_{-5.7}^{+8.0}$	$2.7{ }_{-0.6-1.3}^{+1.9+0.7}$	$P^{\text {cs }}(4459)$
$\Xi(1690)^{-}$	$1692.0 \pm 1.3_{-0.4}^{+1.2}$	$25.9 \pm 9.5_{-13.5}^{+14.0}$	$22.1_{-2.6-8.9}^{+6.2+6.7}$	
$\Xi(1820)^{-}$	$1822.7 \pm 1.5_{-0.6}^{+1.0}$	$36.0 \pm 4.4_{-8.2}^{+7.8}$	$32.9{ }_{-6.2}^{+3.2+4.9}$	wo peaks?
$\Xi(1950)^{-}$	1910.6 ± 18.4	105.7 ± 23.2	$11.5{ }_{-3.5-9.4}^{+5 .+49.9}$	$(\rightarrow$ next page)
$\Xi(2030)^{-}$	2022.8 ± 4.7	68.2 ± 8.5	$7.3_{-1.8-4.1}^{+1.8+3.8}$	
NR	-	-	$35.8{ }_{-6.4-11.2}^{+4.6+10.3}$	

3. Heavy exotic hadrons -X, Y, Z hadrons-

LHCb, Sci. Bull. 66 (2021) 1278

$$
B^{-} \rightarrow J / \psi \Lambda \bar{p}
$$

two peaks?

3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
B^{-} \rightarrow J / \psi \Lambda \bar{p}
$$

$m\left(P_{\psi_{s}}^{\mathcal{A}}\right) 4338.2 \pm 0.7 \mathrm{MeV}$
$\Gamma\left(P_{\psi_{s}}^{\mathcal{A}}\right) \quad 7.0 \pm 1.2 \mathrm{MeV}$
spin: $J=1 / 2$
parity: $\mathrm{P}=-1$ favoreed

$$
P_{C S}(4338) J P=1 / 2^{-}
$$

Giachino, Hosaka, Santopinto, Takeuchi, Takizawa, Yamaguchi, 2209.10413 [hpe-ph]

Hadronic molecule + quark core model It seems consistent with experiments.

Through researches of heavy hadrons...

we can access the colorful world!

Exotic hadrons: mass spectrum of colorful states

R.L. Jaffe, Phys. Rev. D72, 074508 (2005)

Ex. $\wedge_{c}=[q q]_{J=0} C$
$\Sigma_{C}{ }^{(*)}=[q q]_{J=1} C$

Ex. $X(5568)=[s u \bar{d}]_{J=?} \bar{b}$
D0, PRL117, 022003 (2016)
3. Heavy exotic hadrons -X, Y, Z hadrons-
3. Heavy exotic hadrons -X, Y, Z hadrons-

More $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \ldots$....?

3. Heavy exotic hadrons -X, Y, Z hadrons$Y(4360) \& Y(4660)$ too many ψ '?

Some confusions...

Single peqts
mass: 432 atis widtr $s 57^{2} \mathrm{~V} / \mathrm{TeV} / c^{2}$ (relatively broad)

B . ubert et al. [BaBar],
pr rs. Rev. Lett. 98, 212001 (2007)

Double peaks? mass: $4361 \mathrm{MeV} / c^{2} \& 4664 \mathrm{MeV} / c^{2}$
X. L. Wang et al. [Belle],

Phys. Rev. Lett. 99, 142002 (2007)
J. P. Lees et al. [BaBar].
Confirmed double peaks.
3. Heavy exotic hadrons -X, Y, Z hadrons$Z_{c}(3885)^{+}, Z_{c}(4020)^{+}, Z_{c}(4025)^{+}$

Cf. $Z_{c}(3900)^{+}$
Other charged charmonium?
M. Ablikim et al. [BESSIII], Phys. Rev. Lett. 110, 252001 (2013)

M. Ablikim et al. [BESIII], Phys. Rev. Lett. 111, 242001 (2013)
M. Ablikim et al. [BESIII], Phys. Rev. Lett. 112, 132001 (2014)
3. Heavy exotic hadrons -X, Y, Z hadrons-

LHCb, Phys. Rev. Lett. 118, 022003 (2017)
$X(4140), X(4274), X(4500), X(4700)$

Quartet state?
3. Heavy exotic hadrons -X, Y, Z hadronsX(5568)

3. Heavy exotic hadrons -X, Y, Z hadrons-

Talk file by E. S. Norella and C. Chen, CERN Seminar $5^{\text {th }}$ July, 2022

New tetraquark candidates in several $B \rightarrow D \bar{D} h$ decays

$$
\begin{array}{lll}
T_{c \bar{s} 0}^{a}(2900)^{++} & \rightarrow D_{S}^{+} \pi^{+} \text {in } B^{+} \rightarrow \bar{D}^{-} D_{S}^{+} \pi^{+} & \text {LHCb-PAPER-2022-026 } \\
T_{c \bar{s} 0}^{a}(2900)^{0} \rightarrow D_{S}^{+} \pi^{-} \text {in } B^{0} \rightarrow \bar{D}^{0} D_{S}^{+} \pi^{-} & \text {LHCb-PAPER-2022-027 }
\end{array}
$$

- Quark contents: [cs $u \bar{d}],[c \bar{s} \bar{u} d]$
$X(3960) \rightarrow D_{s}^{+} D_{s}^{-}$in $B^{+} \rightarrow D_{s}^{+} D_{s}^{-} K^{+}$
- Quark content: $[c \bar{c} s \bar{s}]$?

These two analyses are natural extensions of the $B^{+} \rightarrow D^{+} D^{-} K^{+}$study
Phys.Rev.D102(2020) 112003
Phys. Rev. Lett. 125 (2020) 242001
https://indico.cern.ch/event/1176505/attachments/2475130/4248283/CERN\%2Oseminar_LHCb.pdf
3. Heavy exotic hadrons -X, Y, Z hadrons-
3. Heavy exotic hadrons -X, Y, Z hadrons-

3. Heavy exotic hadrons -X, Y, Z hadrons-

Are exotic hadrons unstable in strong interaction?

Not necessarily! Some can be stable!

3. Heavy exotic hadrons -X, Y, Z hadronsT_{cc}
Double charm tetraquark
Z_{c}

Hidden charm

$$
C=0
$$

T_{cc}

Double charm
$|C|=2$
3. Heavy exotic hadrons -X, Y, Z hadrons-

| T_{CC} | J.P. Ader, J.M. Richard and P. Taxil,
 Phys. Rev. D25, 2370 (1982) |
| :---: | :---: | :---: |

Double charm tetraquark
J.P. Ader, J.M. Richard and P. Taxil, Phys. Rev. D25, 2370 (1982)

- Color confinement
- Diquark
$1\left(\mathrm{~J}^{\mathrm{P}}\right)=0\left(1^{+}\right)$
strong ud attraction

Gluon exchange force induces color-spin interaction

$$
H_{i n t}=\sum_{i>j} \frac{C_{H}}{m_{i} m_{j}} \vec{s}_{i} \cdot \vec{s}_{j} \quad C_{H}=v_{0} \vec{\lambda}_{i} \cdot \vec{\lambda}_{j}\left\langle\delta\left(r_{i j}\right)\right\rangle
$$

ud pair $1 / m_{C}{ }^{0}$ dominant attraction $\left(\overline{3}_{C}, 1=0,{ }^{1} S_{0}\right)$
c̄u pair $1 / m_{C}$ suppressed
$\bar{c} C \bar{c}$ pair $1 / m_{c}{ }^{2}$ more suppressed $\left(\overline{3}_{c},{ }_{3} S_{1}\right)$

3. Heavy exotic hadrons -X, Y, Z hadrons-

T_{cc}
 Double charm tetraquark

J.P. Ader, J.M. Richard and P. Taxil, Phys. Rev. D25, 2370 (1982)
mass
Attractive ud diquark ($\mathrm{S}=0$)
D D*
$I(J P)=0\left(1^{+}\right)$

3. Heavy exotic hadrons -X, Y, Z hadrons-

T_{cc}
 Double charm tetraquark

J.P. Ader, J.M. Richard and P. Taxil, Phys. Rev. D25, 2370 (1982)

mass

S.-H. Lee, S. Yasui, Eur. Phys. J. C64,283 (2009)
S.-H. Lee, S. Yasui, W. Liu, C.-M. Ko, Eur. Phys. J. C54, 259 (2008)
3. Heavy exotic hadrons -X, Y, Z hadrons-

Recent review:
H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu,
S.-L. Zhu, 2204.02649 [hep-ph]
$T_{c c}$
Double charm tetraquark

Summary of theoretical studies (chronological table!)

bound or not bound?

3. Heavy exotic hadrons -X, Y, Z hadrons-

T_{cc}
 Double charm tetraquark

PRL 119, 202002 (2017)
PHYSICAL REVIEW LETTERS
17 NOVEMBER 2017
0^{0}

Heavy-Quark Symmetry Implies Stable Heavy Tetraquark Mesons $Q_{i} Q_{j} \bar{q}_{k} \bar{q}_{l}$

Estia J. Eichten ${ }^{*}$ and Chris Quigg ${ }^{\dagger}$

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA
(Received 8 August 2017; published 15 November 2017)
~100 MeV above DD*bar threshold

State	J^{P}	j_{ℓ}	$m\left(Q_{i} Q_{j} q_{m}\right)$ (c.g.)	HQS relation	$m\left(Q_{i} Q_{j} \bar{q}_{k} \bar{q}_{y}\right)$	Decay channel	$\mathcal{Q}(\mathrm{MeV})$
$\{c c\}[\bar{u} \bar{d}]$	1^{+}	0	$3663{ }^{\text {b }}$	$m(\{c c\} u)+315$	3978	$D^{+} D^{* 0} 3876$	102
$\{c c\}\left[\bar{q}_{k} \bar{s}\right]$	1^{+}	0	$3764^{\text {c }}$	$m(\{c c\} s)+392$	4156	$D^{+} D_{s}^{*-} 3977$	179
$\{c c\}\left\{\bar{q}_{k} \bar{q}_{l}\right\}$	$0^{+}, 1^{+}, 2^{+}$	1	3663	$m(\{c c\} u)+526$	4146,4167,4210	$D^{+} D^{0}, D^{+} D^{* 0} 3734,3876$	412,292,476
$[b c][\bar{u} \bar{d}]$	0^{+}	0	6914	$m([b c] u)+315$	7229	$B^{-} D^{+} / B^{0} D^{0} 7146$	83
$[b c]\left[\bar{q}_{k} \bar{s}\right]$	0^{+}	0	$7010^{\text {d }}$	$m([b c] s)+392$	7406	$B_{s} D 7236$	170
$[b c]\left\{\bar{q}_{k} \bar{q}_{l}\right\}$	1^{+}	1	6914	$m([b c] u)+526$	7439	$B^{*} D / B D^{*} 7190 / 7290$	249
$\{b c\}[\bar{u} \bar{d}]$	1^{+}	0	6957	$m(\{b c\} u)+315$	7272	$B^{*} D / B D^{*} 7190 / 7290$	82
$\{b c\}\left[\bar{q}_{k} \bar{s}\right]$	1^{+}	0	$7053{ }^{\text {d }}$	$m(\{b c\} s)+392$	7445	$D B_{s}^{*} 7282$	163
$\{b c\}\left\{\bar{q}_{k} \bar{q}_{l}\right\}$	$0^{+}, 1^{+}, 2^{+}$	1	6957	$m(\{b c\} u)+526$	7461,7472,7493	$B D / B^{*} D 7146 / 7190$	317,282,349
$\{b b\}[\bar{u} \bar{d}]$	1^{+}	0	10176	$m(\{b b\} u)+306$	10482	$B^{-} \bar{B}^{* 0} 10603$	-121
$\{b b\}\left[\bar{q}_{k} \bar{s}\right]$	1^{+}	0	$10252^{\text {c }}$	$m(\{b b\} s)+391$	10643	$\bar{B} \bar{B}_{s}^{*} / \bar{B}_{s} \bar{B}^{*} 10695 / 10691$	-48
$\{b b\}\left\{\bar{q}_{k} \bar{q}_{l}\right\}$	$0^{+}, 1^{+}, 2^{+}$	1	10176	$m(\{b b\} u)+512$	$10674,10681,10695$	$B^{-} B^{0}, B^{-} B^{* 0} 10559,10603$	115,78,136

3. Heavy exotic hadrons -X, Y, Z hadrons-

$T_{c c}$
Double charm tetraquark
A.V. Manohar, M. B. Wise, Nucl. Phys. B399, 17 (1993)
mass

Hadron molecule

D
D*
$1\left(J^{P}\right)=0\left(1^{+}\right)$
$+$

D+D* threshold 3880 MeV
DD* interaction
D*

π, p, ω, \ldots

DD* bound state

$$
\begin{array}{|l}
\hline \text { Basis: } \\
(\mathrm{HQS})
\end{array} \frac{1}{\sqrt{2}}\left(D D^{*}-D^{*} D\right)\left({ }^{3} \mathrm{~S}_{1}\right) \frac{1}{\sqrt{2}}\left(D D^{*}-D^{*} D\right)\left({ }^{3} \mathrm{D}_{1}\right) \quad D^{*} D^{*}\left({ }^{3} \mathrm{~S}_{1}\right) \quad D^{*} D^{*}\left({ }^{3} \mathrm{D}_{1}\right)
$$

3. Heavy exotic hadrons -X, Y, Z hadrons-

T_{cc}
 Double charm tetraquark

Hadronic molecule

S. Ohkoda, Y. Yamaguchi, S.Y., K. Sudoh, A. Hosaka, Phys. Rev. D86, 0340197(2012)

3. Heavy exotic hadrons -X, Y, Z hadrons-

$$
\mathrm{T}_{\mathrm{cc}}
$$

Double charm tetraquark

Lattice QCD simulation

Y. Ikeda (HAL Collaboration), PLB729, 85 (2014) $\mathrm{m}_{\pi}=700 \mathrm{MeV}$

3. Heavy exotic hadrons -X, Y, Z hadrons-

T_{cc}

Double charm tetraquark

Lattice QCD simulation
(c) D-D* phase shift

\rightarrow However, the attraction is not sufficiently strong to make a bound state....
(Due to the large pion mass?)
Y. Ikeda (HAL Collaboration), PLB729, 85 (2014)

3. Heavy exotic hadrons -X, Y, Z hadrons-

Double charm tetraquark

T_{cc} really exists in our world!

OPEN
Observation of an exotic narrow doubly charmed tetraquark

LHCb Collaboration*

3. Heavy exotic hadrons -X, Y, Z hadrons-

T_{cc}
 Double charm tetraquark

LHCb, Nature Phys. 18 (2022) 751, Nature Commun. 13 (2022) 3351

Bound state below $\mathrm{D}^{*+} \mathrm{D}^{0}$ threshold,

$$
\begin{aligned}
\delta m_{\mathrm{BW}} & =-273 \pm 61 \pm 5_{-14}^{+11} \underline{{\mathrm{keV} c^{-2}}^{\prime}} \\
\Gamma_{\mathrm{BW}} & =410 \pm 165 \pm 43_{-38}^{+18} \underline{\mathrm{keV},}
\end{aligned}
$$

Very very shallow (keV)!
Anyway, we should explore more on T_{cc} and related states.
Very hot topic ongoing.

3. Heavy exotic hadrons -X, Y, Z hadrons-

T_{cc}
 Double charm tetraquark

Ivan Polyakov (2021)

\section*{| Reference |
| :--- |
| J. Carlson, L. Heller and J. A. Tjon |
 B. Silvestre-Brac and C. Semay}

C. Semay and B. Silvestre-Brac
S. Pepin, F. Stancu, M. Genovese and J. M. Richard
B. A. Gelman and S. Nussinov
J. Vijande, F. Fernandez, A. Valcarce, A. and B. Silvestre-Brac
D. Janc and M. Rosina
F. Navarra, M. Nielsen and S. H. Lee
J. Vijande, E. Weissman, A. Valcarce
D. Ebert, R. N. Faustov, V. O. Galkin and W. Lucha
S. H. Lee and S. Yasui
Y. Yang, C. Deng, J. Ping and T. Goldman
G.-Q. Feng, X.-H. Guo and B.-S. Zou
Y. Ikeda, B. Charron, S. Aoki, T. Doi, T. Hatsuda, T. Inoue, N. Ishii, K. Murano, H. Nemura and K. Sasaki
S.-Q. Luo, K. Chen, X. Liu, Y.-R. Liu and S.L. Zhu
M. Karliner and J. Rosner
E. J. Eichten and C. Quigy
Z. G. Wang
G. K. C. Cheung, C. E. Thomas, J. J. Dudek and R. G. Edwards
W. Park, S. Noh and S. H. Lee
A. Francis, R. J. Hudspith, R. Lewis and K. Maltman
P. Junnarkar, N. Mathur and M. Padmanath
C. Deng, H. Chen and J. Ping
M.-Z. Liu, T.-W. Wu, V. Pavon Valderrama, J.-
J. Xie and L.-S. Geng
G. Yang, J. Ping and J. Segovia
Y. Tan, W. Lu and J. Ping
Q.-F. Lü, D.-Y. Chen and Y.-B. Dong
E. Braaten, L.-P. He and A. Mohapatra
D. Gao, D. Jia, Y.-J. Sun, Z. Zhang, W.-N. Liu and Q. Mei
J.-B. Cheng, S.-Y. Li, Y.-R. Liu, Z.-G. Si, T. Yao S. Noh, W. Park and S. H. Lee
R. N. Faustov, V. O. Galkin and E. M. Savchenko

	Year	$\delta^{\prime} m\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$
36	1987	~ 0
37	1993	+19
38	1994	$[-1,+13]$
39]	1996	<0
40	2002	$[-25,+35]$
41	2003	-112
$\overline{42}$	2004	[-3, -1]
$\overline{43}$	2007	+91
44	2007	$[-16,+50]$
45	2007	+60
46	2009	-79
47	2009	-1.8
48	2013	-215
49	2013	$[-70,+124]$
50	2017	+100
51	2017	$7 \pm 12 \rightarrow 1$
52	2017	+102
53	2017	$+25 \pm 90$
54	2017	$\lesssim 0$
55	2018	+98
56\|	2018	~ 0
57	2018	[$-40,0$]
58	2018	-150
59	2019	-3_{-15}^{+4}
60	2019	-149
61	2020	-182
62	2020	+166
63	2020	+72
64	2020	[-250, +2]
65	2020	+53
66	2021	+13
67	2021	+64

17

0 . Introduction to exotic hadrons

Lattice QCD study of $T_{c c}$ near physical point
Y. Ikeda, et al. (HAL Collaboration), PLB729, 85 (2014) : $m_{\pi}=410,700 \mathrm{MeV}$
Y. Lyu, et al. (HAL Collaboration), 2302.04505: $m_{\pi}=135 \mathrm{MeV}$ (near physical point)

Mass spectrum

Cf. LHCb (2022): below $\mathrm{D}^{*+D^{0}}$ threshold $\delta m_{\mathrm{BW}}=-\underline{273} \pm 61 \pm 5_{-14}^{+11} \mathrm{keV} c^{-2}$,

$$
\Gamma_{\mathrm{BW}}=\underline{410} \pm 165 \pm 43_{-38}^{+18} \underline{\mathrm{keV}},
$$

3. Heavy exotic hadrons -X, Y, Z hadrons-

Recent lattice QCD study on T_{bb} Meinel, Pflaumer, Wagner,
Phys. Rev. D106, 034507 (2022)

Double bottom tetraquark

3. Heavy exotic hadrons -X, Y, Z hadrons-

3. Heavy exotic hadrons -X, Y, Z hadrons-

LHCb, Science Bulletin 65 (2020) 1983

$X_{c c}$ (6900) Four-charm resonance ccत̄C̄

Assuming no interference...

$$
\begin{aligned}
& m[X(6900)]=6905 \pm 11 \pm 7 \mathrm{MeV} / c^{2} \\
& \Gamma[X(6900)]=80 \pm 19 \pm 33 \mathrm{MeV}
\end{aligned}
$$

Assuming interference...
$m[X(6900)]=6886 \pm 11 \pm 11 \mathrm{MeV} / c^{2}$
$\Gamma[X(6900)]=168 \pm 33 \pm 69 \mathrm{MeV}$

Compact state or extended state?

3. Heavy exotic hadrons -X, Y, Z hadrons-

Brief summary of X, Y, Z and P A. Esposito, A. Pilloni, A. D. Plosa, Phys. Rep. 668, 1 (2017)

3. Heavy exotic hadrons -X, Y, Z hadronsBrief summary of X, Y, Z and P A. Esposito, A. Pilloni, A. D. Plosa,

3. Heavy exotic hadrons -X, Y, Z hadrons-

Researches continue....

3. Heavy exotic hadrons -X, Y, Z hadrons-

Fundamental 4 Questions in Hadron Physics

(1) Why are quarks confined?

Confined quarks
(2) What is hadron interaction?

Nuclear force
(3) Why is chiral symmetry broken?

(4) What is phase diagram?

3. Heavy exotic hadrons -X, Y, Z hadrons-
(4) What is phase diagram?

(1) Finite temperature

3. Heavy exotic hadrons -X, Y, Z hadrons-

Production of exotic hadrons?
More quark number than $\mathrm{e}^{+} \mathrm{e}^{-}$and $\mathrm{pp} \rightarrow$ Can we see rare events? (e.x. $20 \mathrm{cc}^{\text {bar }}$ from $\mathrm{Pb}+\mathrm{Pb}$, collision in LHC)

What is the hadron production mechanism? How much are yields of hadrons?

3. Heavy exotic hadrons -X, Y, Z hadrons-

Observation of "anti-hypernuclei"

STAR, Science 328, 58 (2010)
Possible to produce quark many-body systems?

3. Heavy exotic hadrons -X, Y, Z hadrons-

Identifying Multiquark Hadrons from Heavy Ion Collisions

Sungtae Cho, ${ }^{1}$ Takenori Furumoto, ${ }^{2,3}$ Tetsuo Hyodo, ${ }^{4}$ Daisuke Jido, ${ }^{2}$ Che Ming Ko, ${ }^{5}$ Su Houng Lee, ${ }^{1,2}$
Marina Nielsen, ${ }^{6}$ Akira Ohnishi, ${ }^{2}$ Takayasu Sekihara,,${ }^{2,7}$ Shigehiro Yasui, ${ }^{8}$ and Koichi Yazaki ${ }^{2,3}$
(ExHIC Collaboration)
${ }^{1}$ Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea
${ }^{2}$ Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan ${ }^{3}$ RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
${ }^{4}$ Department of Physics, Tokyo Institute of Technology, Meguro 152-8551, Japan
${ }^{5}$ Cyclotron Institute and Department of Physics and Astronomy, Texas A\&M University, College Station, Texas 77843, USA
${ }^{6}$ Instituto de Física, Universidade de São Paulo, C.P. 66318, 05389-970 São Paulo, SP, Brazil
${ }^{7}$ Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
${ }^{8}$ Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1, Oho, Ibaraki 305-0801, Japan
(Received 10 November 2010; published 24 May 2011)

Cf. ExHIC collaboration: Phys. Rev. C84 (2011) 064910; Prog. Part. Nucl. Phys. 95 (2017) 279 (review)
3. Heavy exotic hadrons - X, Y, Z hadronsProduction process of exotic hadrons Pre-reaction QGP Hadronization

Temperature

temperature

Early thermalization
1 fm/c
QGP $5 \mathrm{fm} / \mathrm{c} \quad 7 \mathrm{fm} / \mathrm{c}$
 Resonance/ formation

3. Heavy exotic hadrons -X, Y, Z hadrons-

3. Heavy exotic hadrons -X, Y, Z hadronsStatistical model

$$
\begin{gathered}
T_{H} \gamma_{h} \\
V_{H}
\end{gathered} \quad N_{h}^{\text {stat }}=V_{H} \frac{g_{h}}{2 \pi^{2}} \int_{0}^{\infty} \frac{p^{2} d p}{\gamma_{h}^{-1} e^{E_{h} / T_{H}} \pm 1}
$$

A. Andronic et al.,

Nucl. Phys. A772, 167 (2006)

Key point:
Almost equilibrium state (temperature T_{H}) Chemical-freezeout (fugacity γ_{h}) Uniform volume (V_{H})
Those parameters are determined to reproduce normal hadrons.

Normal hadrons (LHC/ALICE)

What's about exotic hadrons?

3. Heavy exotic hadrons -X, Y, Z hadrons-

Coalescence model

$$
N_{h}^{\text {coal }} \simeq g_{h} \prod_{j=1}^{n} \frac{N_{j}}{g_{j}} \prod_{i=1}^{n-1} \frac{\left(4 \pi \sigma_{i}^{2}\right)^{3 / 2}}{V\left(1+2 \mu_{i} T \sigma_{i}^{2}\right)}\left[\frac{4 \mu_{i} T \sigma_{i}^{2}}{3\left(1+2 \mu_{i} T \sigma_{i}^{2}\right)}\right]^{l_{i}}
$$

Key point: convolution of wave functions and thermal distributions in phase space (x, p)

$$
\begin{aligned}
N_{h}^{\text {coal }}= & g_{h} \int\left[\prod_{i=1}^{n} \frac{1}{g_{i}} \frac{p_{i} \cdot d \sigma_{i}}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} \mathbf{p}_{i}}{E_{i}} f\left(x_{i}, p_{i}\right)\right] \\
& \times f^{W}\left(x_{1}, \ldots, x_{n}: p_{1}, \ldots, p_{n}\right) .
\end{aligned}
$$

(1) distribution function $f\left(x_{i}, p_{i}\right)$ for particle i $\int p_{i} \cdot d \sigma_{i} \frac{d^{3} \mathbf{p}_{i}}{(2 \pi)^{3} E_{i}} f\left(x_{i}, p_{i}\right)=N_{i}$
(2) Wigner function

$$
\begin{aligned}
& f^{W}\left(x_{1}, \ldots, x_{n}: p_{1}, \ldots, p_{n}\right) \\
& =\int \prod_{i=1}^{n} d y_{i} e^{i p_{i} y_{i}} \psi^{*}\left(x_{1}+y_{1} / 2, \ldots, x_{n}+y_{n} / 2\right) \\
& \quad \times \psi\left(x_{1}-y_{1} / 2, \ldots, x_{n}-y_{n} / 2\right),
\end{aligned}
$$

Harmonic oscillator wave function (frequency ω) is used. The value of ω is determined by normal hadron productions.
V. Greco, C. M. Ko, P. Levai, PRL90, 202302 (2003)
L. W. Chen et al., PLB 601, 34 (2004)
L. W. Chen et al., PRC 76, 014906 (2007)

What's about exotic hadrons?
The same formula can be applied to quark/hadron-molecule coalescencéo

3. Heavy exotic hadrons -X, Y, Z hadrons-

Parameters in statistical/coalescence models

	RHIC		LHC (2.76 TeV)		LHC (5.02 TeV)		RHIC	LHC (5 TeV)
	Sc. 1	Sc. 2	Sc. 1	Sc. 2	Sc. 1	Sc. 2		
$T_{H}(\mathrm{MeV})$	162		156				175	
$V_{H}\left(\mathrm{fm}^{3}\right)$	2100		5380				1908	5152
$\mu_{B}(\mathrm{MeV})$	24		0				20	0
$\mu_{s}(\mathrm{MeV})$	10		0				10	0
γ_{c}	22		39		50		6.40	15.8
γ_{b}	4.0×10^{7}		8.6×10^{8}		1.4×10^{9}		2.2×10^{6}	3.3×10^{7}
$T_{C}(\mathrm{MeV})$	162	166	156	166	156	166		
$V_{C}\left(\mathrm{fm}^{3}\right)$	2100	1791	5380	3533	5380	3533	1000	2700
$\omega(\mathrm{MeV})$	590	608	564	609	564	609		
$\omega_{s}(\mathrm{MeV})$	431	462	426	502	426	502		
$\omega_{c}(\mathrm{MeV})$	222	244	219	278	220	279		
$\omega_{b}(\mathrm{MeV})$	183	202	181	232	182	234		
$N_{u}=N_{d}$	320	302	700	593	700	593	245	662
$N_{s}=N_{\bar{s}}$	183	176	386	347	386	347	150	405
$N_{c}=N_{\bar{c}}$							3	20
$N_{b}=N_{\bar{b}}$							0.02	0.8

Scenario 1: $T_{C}=T_{H}, V_{C}=V_{H}$
ω : the hadron yields from the coalescence model at T_{C} $=$ the hadron yields from the statistical modal at T_{H}.

Scenario 2: ω : the hadron yields at T_{C} to reproduce RHIC/LHC data
T_{C} and V_{C} :the hadron yields from the coalescence model at T_{C} $=$ the hadron yields from the statistical modal at T_{H}.

3. Heavy exotic hadrons -X, Y, Z hadronsnumerical results (\# per collision)

Particle	Scenario 1		Scenario 2		Mol.	Stat.
	$q \bar{q} / q q q$	Multiquark	$q \bar{q} / q q q$	Multiquark		
RHIC						
$\mathrm{f}_{0}(980)$	2.1 (0.7)	3.9×10^{-2}	2.1 (0.7)	4.0×10^{-2}	1.7	3.5
$a_{0}(980)$	6.4	1.2×10^{-1}	6.4	1.2×10^{-1}	5.2	10
$K(1460)$	-	5.8×10^{-2}	$-$	5.7×10^{-2}	1.3×10^{-1}	6.3×10^{-1}
Λ (1405)	4.7×10^{-1}	2.3×10^{-2}	4.5×10^{-1}	2.4×10^{-2}	7.3×10^{-1}	8.6×10^{-1}
$\Delta \Delta$	-	4.2×10^{-3}	-	5.3×10^{-3}	-	1.8×10^{-2}
\A-NE (H)	-	4.7×10^{-4}	-	5.0×10^{-4}	1.6×10^{-3}	4.9×10^{-3}
$N \Omega$	-	1.7×10^{-3}	-	1.9×10^{-3}	1.4×10^{-3}	6.7×10^{-3}
LHC (2.76 TeV)						
$f_{0}(980)$	4.3 (1.2)	5.4×10^{-2}	4.1 (1.2)	6.0×10^{-2}	3.2	6.6
$a_{0}(980)$	13	1.6×10^{-1}	12	1.8×10^{-1}	9.5	20
$K(1460)$	-	8.2×10^{-2}	-	8.0×10^{-2}	1.9×10^{-1}	1.0
Λ (1405)	7.5×10^{-1}	2.9×10^{-2}	7.0×10^{-1}	3.2×10^{-2}	1.1	1.4
$\Delta \Delta$	-	5.8×10^{-3}	-	1.0×10^{-2}	-	1.9×10^{-2}
A Λ-NE (H$)$	-	5.0×10^{-4}	-	6.1×10^{-4}	1.8×10^{-3}	5.9×10^{-3}
$N \Omega$	-	1.8×10^{-3}	-	2.3×10^{-3}	1.6×10^{-3}	7.8×10^{-3}
LHC (5.02 TeV)						
$f_{0}(980)$	4.3 (1.2)	5.4×10^{-2}	4.1 (1.2)	6.0×10^{-2}	3.2	6.6
$a_{0}(980)$	13	1.6×10^{-1}	12	1.8×10^{-1}	9.5	20
$K(1460)$	-	8.2×10^{-2}	-	8.0×10^{-2}	1.9×10^{-1}	1.0
Λ (1405)	7.5×10^{-1}	2.9×10^{-2}	7.0×10^{-1}	3.2×10^{-2}	1.1	1.4
$\Delta \Delta$	-	5.8×10^{-3}		1.0×10^{-2}	-	1.9×10^{-2}
$\Lambda \Lambda-N E(H)$	-	5.0×10^{-4}	-	6.1×10^{-4}	1.8×10^{-3}	5.9×10^{-3}
$N \Omega$	-	1.8×10^{-3}	-	2.3×10^{-3}	1.6×10^{-3}	7.8×10^{-3}

Particle	Scenario 1		Scenario 2		Mol.	Stat.
	$q \bar{q} / q q q$	Multiquark	$q \bar{q} / q q q$	Multiquark		
RHIC						
$\Theta(1530)$	-	6.7×10^{-3}	-	6.7×10^{-3}	-	5.0×10^{-1}
$\bar{K} K N$	$-$	5.0×10^{-3}	-	5.1×10^{-3}	4.2×10^{-2}	1.2×10^{-1}
$\bar{K} N N$	7.3×10^{-4}	2.7×10^{-5}	7.4×10^{-4}	2.9×10^{-5}	3.9×10^{-3}	5.8×10^{-3}
$\Omega \Omega$	-	8.2×10^{-6}	-	9.4×10^{-6}	-	1.5×10^{-5}
LHC (2.76 TeV)						
Θ (1530)	-	8.2×10^{-3}	-	8.5×10^{-3}	-	6.8×10^{-1}
$\bar{K} K N$	$-$	6.0×10^{-3}	-	6.6×10^{-3}	5.1×10^{-2}	1.5×10^{-1}
$\bar{K} N N$	7.9×10^{-4}	2.3×10^{-5}	8.6×10^{-4}	3.0×10^{-5}	3.9×10^{-3}	6.3×10^{-3}
$\Omega \Omega$	-	7.6×10^{-6}	-	1.2×10^{-5}	$-$	1.8×10^{-5}
LHC (5.02 TeV)						
$\Theta(1530)$	-	8.2×10^{-3}	-	8.5×10^{-3}	-	6.8×10^{-1}
$\bar{K} K N$	$-$	6.0×10^{-3}	$-$	6.6×10^{-3}	5.2×10^{-2}	1.5×10^{-1}
$\bar{K} N N$	7.9×10^{-4}	2.3×10^{-5}	8.6×10^{-4}	3.0×10^{-5}	3.9×10^{-3}	6.3×10^{-3}
$\Omega \Omega$	$-$	7.6×10^{-6}	$-$	1.2×10^{-5}	-	1.8×10^{-5}

The yields of exotic hadrons are much smaller than those of normal hadrons (1~10), but not negligible.

Particle	Scenario 1		Scenario 2		Mol.	Stat.
	$\overline{q \bar{q} / q q q}$	Multiquark	$q \bar{q} / q q q$	Multiquark		
RHIC						
$\mathrm{D}_{s}(2317)$	2.3×10^{-2}	2.4×10^{-3}	2.3×10^{-2}	2.5×10^{-3}	6.5×10^{-3}	6.6×10^{-2}
X (3872)	5.4×10^{-4}	5.0×10^{-5}	5.6×10^{-4}	5.3×10^{-5}	9.1×10^{-4}	5.7×10^{-4}
$Z_{\text {c }}(3900)$	5.	1.5×10^{-4}	5	1.6×10^{-4}		1.5×10^{-3}
$Z_{\text {c }}(4430)$	-	1.5×10^{-4}	-	1.6×10^{-5}	5.0×10^{-5}	6.5×10^{-5}
$Z_{b}(10610)$	-	2.0×10^{-9}	-	2.1×10^{-9}	-	2.1×10^{-8}
$Z_{b}(10650)$	-	2.0×10^{-9}	-	2.1×10^{-9}	-	1.6×10^{-8}
X (5568)	-	5.1×10^{-5}	-	5.2×10^{-5}	-	2.3×10^{-3}
$P_{c}(4380)$	-	2.5×10^{-5}	-	2.6×10^{-5}	2.9×10^{-5}	9.2×10^{-5}
$P_{c}(4450)$	-	1.5×10^{-5}	-	1.5×10^{-5}	-	9.1×10^{-5}
LHC (2.76 TeV)						
$D_{s}(2317)$	5.2×10^{-2}	4.3×10^{-3}	5.0×10^{-2}	4.5×10^{-3}	1.4×10^{-2}	1.5×10^{-1}
X (3872)	1.6×10^{-3}	1.1×10^{-4}	1.7×10^{-3}	1.3×10^{-4}	2.7×10^{-3}	1.7×10^{-3}
$Z_{c}(3900)$	-	3.4×10^{-4}		4.0×10^{-4}	-	4.3×10^{-3}
$Z_{c}(4430)$	-	3.4×10^{-4}	-	4.0×10^{-4}	1.4×10^{-4}	1.7×10^{-4}
$Z_{b}(10610)$	-	1.3×10^{-7}	-	1.5×10^{-7}	-	1.9×10^{-6}
$Z_{b}(10650)$	-	1.3×10^{-7}	-	1.5×10^{-7}	-	1.5×10^{-6}
X (5568)	-	5.0×10^{-4}	-	5.2×10^{-4}	-	3.1×10^{-2}
$P_{c}(4380)$	-	5.0×10^{-5}	-	5.8×10^{-5}	6.4×10^{-5}	2.1×10^{-4}
$P_{c}(4450)$	-	2.9×10^{-5}	-	3.2×10^{-5}	-	2.0×10^{-4}
LHC (5.02 TeV)						
$D_{s}(2317)$	6.5×10^{-2}	5.4×10^{-3}	6.4×10^{-2}	5.7×10^{-3}	1.8×10^{-2}	1.9×10^{-1}
X (3872)	2.5×10^{-3}	1.8×10^{-4}	2.7×10^{-3}	2.1×10^{-4}	4.5×10^{-3}	2.8×10^{-3}
$Z_{\text {c }}(3900)$	-	5.4×10^{-4}	-	6.4×10^{-4}	-	7.1×10^{-3}
$Z_{c}(4430)$	-	5.4×10^{-4}	-	6.4×10^{-4}	2.3×10^{-4}	2.8×10^{-4}
$Z_{b}(10610)$	-	3.4×10^{-7}	-	3.9×10^{-7}	-	5.0×10^{-6}
$Z_{b}(10650)$	-	3.4×10^{-7}	-	3.9×10^{-7}	-	3.9×10^{-6}
X (5568)	-	7.9×10^{-4}	-	8.2×10^{-4}	-	5.0×10^{-2}
$P_{c}(4380)$	-	7.9×10^{-5}	-	9.3×10^{-5}	1.0×10^{-4}	3.4×10^{-4}
$P_{c}(4450)$	-	4.7×10^{-5}	-	5.0×10^{-5}	-	3.4×10^{-4}

Particle	Scenario 1		Scenario 2		Mol.	Stat.
	$q \bar{q} / q q q$	Multiquark	$q \bar{q} / q q q$	Multiquark		
RHIC						
$T_{\text {cc }}^{1}$	-	5.0×10^{-5}	-	5.3×10^{-5}	-	8.9×10^{-4}
$\bar{D} N$	-	2.6×10^{-3}	-	2.6×10^{-3}	1.3×10^{-2}	1.0×10^{-2}
$\bar{D}^{*} N$	-	9.8×10^{-4}	-	9.3×10^{-4}	1.1×10^{-2}	9.6×10^{-3}
$\Theta_{\text {cs }}$	-	7.4×10^{-4}	-	7.4×10^{-4}	$-$	6.4×10^{-3}
H_{c}	-	2.7×10^{-4}	-	2.8×10^{-4}	$-$	5.7×10^{-4}
$\overline{\mathrm{D}} \mathrm{N} N$	-	1.8×10^{-5}	-	1.8×10^{-5}	9.4×10^{-5}	5.1×10^{-5}
$\Lambda_{c} N$	-	1.5×10^{-3}	-	1.5×10^{-3}	5.0×10^{-3}	2.9×10^{-3}
$\Lambda_{\text {c }}$ NN	-	6.7×10^{-6}	-	6.7×10^{-6}	2.9×10^{-6}	9.8×10^{-6}
$T_{c b}^{0}$	-	9.3×10^{-8}	-	9.9×10^{-8}	.	1.6×10^{-6}
LHC (2.76 TeV)						
$T_{c c}^{1}$	-	1.1×10^{-4}	-	1.3×10^{-4}	-	2.7×10^{-3}
$\bar{D} N$	-	4.3×10^{-3}	-	4.2×10^{-3}	2.3×10^{-2}	1.9×10^{-2}
$\bar{D}^{*} N$	-	1.6×10^{-3}	-	1.3×10^{-3}	2.0×10^{-2}	1.8×10^{-2}
$\Theta_{\text {cs }}$	-	1.2×10^{-3}	-	1.2×10^{-3}		1.2×10^{-2}
H_{c}	-	3.8×10^{-4}	-	4.0×10^{-4}	-	8.6×10^{-4}
$\overline{\mathrm{D}}$ NN	-	2.0×10^{-5}	-	2.0×10^{-5}	1.1×10^{-4}	6.7×10^{-5}
$\Lambda_{c} N$	-	2.2×10^{-3}	-	2.2×10^{-3}	7.0×10^{-3}	4.3×10^{-3}
$\Lambda_{c} N N$	-	6.7×10^{-6}	-	6.5×10^{-6}	2.7×10^{-6}	9.9×10^{-6}
$T_{c b}^{0}$	-	1.1×10^{-6}	-	1.3×10^{-6}	-	2.7×10^{-5}
LHC (5.02 TeV)						
$T_{c c}^{1}$	-	1.8×10^{-4}	-	2.1×10^{-4}	-	4.4×10^{-3}
$\bar{D} N$	-	5.3×10^{-3}	-	5.3×10^{-3}	3.0×10^{-2}	2.4×10^{-2}
$\bar{D}^{*}{ }^{\prime}$	-	2.0×10^{-3}	-	1.7×10^{-3}	2.6×10^{-2}	2.3×10^{-2}
$\Theta_{\text {cs }}$	-	1.5×10^{-3}	-	1.4×10^{-3}	.	1.6×10^{-2}
H_{c}	-	4.7×10^{-4}	-	4.9×10^{-4}	-	1.1×10^{-3}
$\overline{\text { D }}$ NN	-	2.5×10^{-5}	-	2.5×10^{-5}	1.5×10^{-4}	8.6×10^{-5}
$\Lambda_{c} N$	-	2.7×10^{-3}	-	2.7×10^{-3}	9.1×10^{-3}	5.5×10^{-3}
$\Lambda_{\text {c }}$ NN	-	8.2×10^{-6}	-	8.0×10^{-6}	3.5×10^{-6}	1.3×10^{-5}
$T_{c b}^{0}$	-	2.3×10^{-6}	-	2.7×10^{-6}	-	5.6×10^{-5}

3. Heavy exotic hadrons -X, Y, Z hadrons-

The statistical model v.s. the coalescence model
RHIC (Scenario 1)

1. The yields of the compact multiquark are relatively suppressed.
2. The yields of the hadronic molecules depend on their spatial sizes.

3. Heavy exotic hadrons -X, Y, Z hadrons-

PHYSICAL REVIEW LETTERS 128, 032001 (2022)
Evidence for $\mathrm{X}(3872)$ in $\mathrm{Pb}-\mathrm{Pb}$ Collisions and Studies of its Prompt Production at $\sqrt{s_{N N}}=5.02 \mathrm{TeV}$

A. M. Sirunyan et al. ${ }^{*}$
CMS Collaboration

X(3872) found in heavy ion collisions!

More produced than pp collisions.
Note: Loosely bound states are difficult to be produced in pp collisions.

Many questions

1. Consistent with ExHIC's prediction? Supporting the hadronic molecule?
2. How is the p_{T} dependence related to hadron structure? (p_{T} trans. momentum) Cf. Choi, Lee, PRC101, 024902 (2020)
3. Elliptic flow by X(3872)?

Cf. Zhang et al., PRL126, 012301 (2021)
4. What about $\chi_{c 1}(2 P)$?
$\left(\chi_{c 1}(2 P)\right.$ is coupled to $\left.X(3872)\right)$
5. Other exotics?

Do you have questions?

Summary of this lecture

1. Exotic heavy hadrons ($X, Y, Z, P_{c}, T_{c c}, \ldots$) are new objects to be studied in hadron physics.
2. Hadron spectroscopy provides us with basic tools to study internal structure of exotic hadrons.
3. Heavy hadrons in nuclear systems are important in understanding the strong interaction.
4. Cooperation between experiments and theory is important (KEK, J-PARC, RHIC, LHC, GSI-FAIR, BES, ...).

Keywords in the lecture

Exotic

Tetraquark

Spectroscopy

Heavy quark symmetry

Heavy hadron effective theory

[^0]: A. E. Bondar, A. Garmash, A. I. Milstein, R. Mizuk, M. B. Voloshin, Phys. Rev. D 84, 054010 (2011)

[^1]: A. E. Bondar, A. Garmash, A. I. Milstein, R. Mizuk, and M. B. Voloshin, Phys. Rev. D84, 054010 (2011)
 M. B. Voloshin, Phys. Rev. D 84, 031502 (2011)
 S. Ohkoda, S. Yasui, and A. Hosaka, Phys. Rev. D 89, 074029 (2014)

