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3. Heavy exotic hadrons -X, Y, Z hadrons-

Charm/bottom exotic hadrons
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3. Heavy exotic hadrons -X, Y, Z hadrons-

gluonic excitation modes

“string excitation”
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FIG . 2: T he loop diagrams as a consequence of F ig. 1 where the ATS and kinematic CUSP can be recognized.

TABLE I : T he χ cJ p thresholds which can be enhanced by the ATS via F ig. 2 (a) .

T hreshold masses [M eV ] χ c0 (1P ) 0+ χ c1 (1P ) 1+ χ c2 (1P ) 2+

p 1/2+ 4353 4449 4494

The interesting property of F ig. 2 (a) and (b) is that given the masses of the involved states located within certain
ranges it will allow the internal states to be on-shell simultaneously. This is different from the kinematic CUSP effects
which generally appear as perturbative structures in the invariant mass spectrum. W hen such a condition is satisfied,
the singularity behavior of the integral will produce strong enhancements at the singular points of which the effects
can be measured in the experiment. In particular, the singular points will mostly locate in the vicinity of the two-body
thresholds but not necessarily to be exactly at the thresholds. I t should be realized that the singular property will
not change even when higher partial waves contribute at the interaction vertices. The reason is because the singular
term will always be kept in the decomposition of the integrand in the Feynman parametrization. In another word,
even though the contribution from the singular term relative to other contributions might be small, its enhancement
at the singular point may not be negligible1 . Nevertheless, in the case of Λb → J/ψK − p there are several thresholds
close to each other. The even small singularity enhancement can build up and produce measurable effects.

Since quite a lot of thresholds can appear in the decays of Fig. 2 and we are still lack of information about the
vertex couplings, we only consider low partial waves and thresholds which are close to the masses of interest and we
discuss separately the properties of those three types of loops in Fig. 2.

F igure 2 (a) is a consequence of F ig. 1 (a) where the rescattering between Λ∗ and charmonium states χcJ is
considered. Note that the mass thresholds for p + χ cJ (J = 0, 1, 2) are close to the peak masses for P +

c (4380) and
P +

c (4450) as listed in Table I . A lso, the S-wave scatterings of pχ c2 → J/ψp can access the quantum numbers of 3/2+

and 5/2+ for the threshold enhancement. The χc1 and p scattering can access the quantum numbers of 1/2+ and
3/2+ . T he χc0p can reach 1/2− and 3/2− via a P wave interaction. I t is interesting to notice that the significant
enhancement to the χcJ p via the ATS would prefer that the mass of Λ∗ to be larger than 2 GeV. From Fig. 2 (a)
of Ref. [1], it shows that the cross section for K − p is smooth but non-zero. Note that as long as the kinematics
approaching the ATS condition, all the cross sections will contribute to the threshold singularity. I n F ig. 3 we show
the structures in the invariant mass of J/ψp via the triangle diagram of F ig. 2 (a) . By varying the relative strengths
of the loop amplitudes, the threshold peaks can match the data. For demonstration we only consider loops of χc1 and
χc2 at this moment.

1 T he detai led discussion about the AT S and their m anifestations in physical processes can be found in R ef. [15] and there are cases that
the AT S involving higher partial wave interactions can sti l l produce significant threshold enhancements [16–21].

Kinematic effect

Exotic Hadrons
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Zc(4430)+ Zc(3900)+

Zc(4020)+
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X(4274)

X(4500)
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Charm
Tetraquark

11



3. Heavy exotic hadrons -X, Y, Z hadrons-

X(3872)
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3. Heavy exotic hadrons -X, Y, Z hadrons-

S. K. Choi et al. [Belle Collaboration], Phys. Rev. Lett. 91, 262001 (2003)

X(3872)

13

> 2600 citations



198 16 Multiquark States

Fig. 16.4 Observation of the X (3872) → J /ψ π+ π− ; (a) by Belle in B+ → K + J /ψ π+ π−

(including the charge conjugated B− decay) [11]; (b) by CDF, the strong peak at 3686 MeV stems
from the ψ(2S), the bottom distribution shows the wrong charge combinations J /ψ π±π± [12];
(c) by CM S, the top blue curve is the fi t, the bottom dotted red curve is the background subtracted
signal (enhanced in the inset) [13]

Fig. 16.5 The X (3872) as a charmonium meson (left) or a tetraquark (right)

Fig. 16.6 The X (3872) as a loosely bound DD
∗

system similar to the deuteron

a weakly bound D 0D
∗0

“molecule” bound by one pion exchange (Fig. 16.6). The
existence of such a state was predicted many years ago in analogy to the weakly
bound deuteron [17]. Indeed, a DD

∗
mass enhancement is observed at threshold

by Belle in B decays [18]. One also expects the D+ D
∗−

decay (threshold at

3879.8 M eV), which with D0D
∗0

leads to i = 0 and i = 1 isospin mixing
(analogous to the K K or K K

∗
systems, see (6.45)), leading to signals in J /ψ ρ

and J /ψ ω, which have both been observed [9]. Note that a molecular structure is
of the type (cq)(cq), in contrast to the cqcq tetraquark which is a more compact
system. The latter is perhaps unlikely for the X (3872), since the charged partner
(e.g. cucd) has so far not been observed.

3. Heavy exotic hadrons -X, Y, Z hadrons-

X(3872)

a) Choi, S.-K., et al.: Phys. Rev. Lett. 91, 262001 (2003)

b) Acosta, D., et al.: Phys. Rev. Lett. 93, 072001 (2004)

c) Chatrchyan, S., et al.: JHEP 04, 154 (2013)

Cf. Amsler, "The Quark Structures of Hadrons", Springer (2018)

X(3872)→J/ψπ+π- seen in different reactions 
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Mass of X(3872) is very close to DD*bar threshold.

X(3872)

15

𝜒𝑐0′(3860)

Note:
𝜒𝑐1′ 2P and ℎ𝑐

′ 2P not 

observed yet

𝜒𝑐2′(3930)

Observed 2P state

𝜒𝑐0′



3. Heavy exotic hadrons -X, Y, Z hadrons-

Mass of X(3872) is very close to DD*bar threshold.

X(3872)
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3871.65±0.06 MeV

D+D*-(D-D*+) 3879.84±0.14 MeV

3871.68±0.10  MeV
D0D*0bar

X(3872)

isospin
symmetry
breaking

Note: the X(3872) mass observed in DD* channel
seems slightly heavier than the mass in J/ψππ channel.

𝜒𝑐0′(3860)

Note:
𝜒𝑐1′ 2P and ℎ𝑐

′ 2P not 

observed yet

𝜒𝑐2′(3930)

Observed 2P state

𝜒𝑐0′



3. Heavy exotic hadrons -X, Y, Z hadrons-

What is quantum number (JPC)？
V. Bhardwaj et al. [Belle], Phys. Rev. Lett. 107, 091803 (2011)

C=-1 C=-1

X(3872) C=+1

① photon decay (Cf. B. Aubert et al. [BaBar], Phys. Rev. Lett. 102, 132001 (2009))

→

② angular distribution of decay products

→

A. Abulencia et al. [CDF], Phys. Rev. Lett. 98, 132002 (2007)

B. S.-K. Choi et al. [Belle], Phys. Rev. D 84, 052004 (2011)

P. del Amo Sanchez et al. [BaBar], Phys. Rev. D 82, 011101 (2010)

X(3872) JPC=1++ or 2-+ JPC=1++

R. Aaij et al. [LHCb], Phys. Rev. Lett. 110, 222001 (2013)

X(3872)

17

No signature for C=-1: J/ψη(PTEP2014, 

043C01 (2014)) and χc1(2P) (PRL111, 032001 (2013))



3. Heavy exotic hadrons -X, Y, Z hadrons-

Tetrquark interpretation
L. Maiani, F. Piccinini, A. D. Polosa,

and V. Riquer, Phys. Rev. D 71,

014028 (2005)

① Isospin symmetry breaking → particle eigenstates (isospin sym. discarded)

If isospin eigenstate exists… 

X(3872)

②Mixing of uubar and ddbar via gluon exchange (interaction strength 𝛿)

Hamiltonian:

③ Eigenstates of Hamiltonian: two states appear

mass difference:

18

I=0 I=1

𝛿: flavor-blind coupling

(same for 𝑢ത𝑢 and 𝑑 ҧ𝑑)

𝑞

ത𝑞

𝑞′

ത𝑞′gluon



3. Heavy exotic hadrons -X, Y, Z hadrons-

Tetrquark interpretation

X(3872)

Searching two states in B decays (by experiments)

S.-K. Choi et al. [Belle], Phys. Rev. D 84, 052004 (2011)

B. Aubert et al. [BaBar], Phys. Rev. D 77, 111101 (2008)

mass difference

Charged state？

S.-K. Choi et al. [Belle], Phys. Rev. D 84, 052004 (2011)

(？) No signature in experiments.

No mass difference → Inconsistent with tetraquark...

19

(Replacing u and d)



3. Heavy exotic hadrons -X, Y, Z hadrons-

X(3872)

Dominance of D0D*0bar component？

X(3872)?

≈ 10×

Excess at D0D*0bar threshold was found.

T. Aushev et al. [Belle], Phys. Rev. D 81, 031103 (2010)

(cf. B. Aubert et al. [BaBar], Phys. Rev. D 77, 011102 (2008))20

Branching fraction B(channel): 

the ration of the decay width by the specific

channel against the total decay width



3. Heavy exotic hadrons -X, Y, Z hadrons-

3871.65±0.06 MeV

D+D*-(D-D*+) 3879.84±0.14 MeV

3871.68±0.10  MeV
D0D*0bar

X(3872)

isospin
symmetry
breaking

X(3872)

D0D*0bar molecule interpretation

D0

D0*inter-distance ≥ 10 fm!

The energy from threshold is less than 0.1 MeV...

Such fragile particle must be difficult to be produced in ppbar collisions...

208Pb

21



3. Heavy exotic hadrons -X, Y, Z hadrons-

X(3872)

Likely NOT a simple D0D*0bar molecule... What is this?

Hint: absence of χc1(2P)
R. Aaij et al. [LHCb], Phys. Rev. Lett.

110, 222001 (2013)

No observation of χc1(2P) 

Is X(3872) mixed withχc1(2P) ? 
χc0(2P) =χc0(3915) 

?

DD*bar (S-wave) can easily

couple to χc1(1
++).

r

V(r)

centrifugal potential

L(L+1)/2μr2

S-wave

no centrifugal force
22

Observed by Belle, Phys. Rev. 

Lett. 96, 082003 (2006)

Observed by Belle, Phys. Rev. 

Lett. 104, 092001 (2010)

Under the debates:

・ Suppression in decay

to DDbar in experiments

・ccbarssbar tetraquark？

DDbar

DD*bar



3. Heavy exotic hadrons -X, Y, Z hadrons-

X(3872)

Admixture of D0D*0bar molecule and χc1(2P)
E. J. Eichiten et al., PRD73,014014(2006); A. M. Badalian et al., PRD85,031103(2012)

M. Takizawa and S. Takeuchi, Prog. Theor. Exp. Phys. 2013, 093D01 (2013)

② Coupling between D0D*0bar (D+D*-) and χc1(2P): DD*bar ⇄ χc1(2P)  

g: coupling constant
Λ: momentum cutoff

③ Hamiltonian (3×3 matrix)

Parameter set: 0.3 GeV ≤ Λ ≤ 1.0 GeV (g is fixed to reproduce 3872 MeV mass.)

① Wave function as a superposition

Model setting (simple!)

23



3. Heavy exotic hadrons -X, Y, Z hadrons-

X(3872)

Admixture of D0D*0bar molecule and χc1(2P)
M. Takizawa and S. Takeuchi,

Prog. Theor. Exp. Phys.

2013, 093D01 (2013)① Components in wave function

Result

c1,2,3 do not depend strongly in cutoff Λ.

D0 D0*

D0 D0*
1/Λ

“shallow state”

“deep state”

D0D*0bar

D+D*-

[GeV]

24



3. Heavy exotic hadrons -X, Y, Z hadrons-

X(3872)

Admixture of D0D*0bar molecule and χc1(2P)
M. Takizawa and S. Takeuchi,

Prog. Theor. Exp. Phys.

2013, 093D01 (2013)② Spectrum

Result Where is this χc1(2P)?

Spectral function of X(3872)

“χc1(2P)”

X(3872) “χc1(2P)” exists

as a broad peak.

This explains naturally

no confirmation of

χc1(2P) in experiments. 

25

bound state + cusp



3. Heavy exotic hadrons -X, Y, Z hadrons-

X(3872)

Radiative decay
X(3872)→ψ(2S)γ, J/ψγ

B. Aubert et al. [BaBar],

Phys. Rev. Lett. 102, 132001 (2009)

V. Bhardwaj et al. [Belle],

Phys. Rev. Lett. 107, 091803 (2011)

R. Aaij et al. [LHCb], Nucl. Phys.

B886, 665 (2014)

Those suggest

B(X(3872)→ψ(2S)γ) ≈ 3 × B(X(3872)→J/ψγ) 

Branching ratios (Rγ):

X(3872)=χc1(1P)+χc1(2P)+D0D*0bar+D+/-D*-/+bar

Table II. The probability of the cc components in the X(3872), the radiative decay width Γ in keV, and the

ratio Rγ are shown for each parameter set, A00, A01, and A10.

model gcc(1P)−DD Z2
cc(1P)

Z2
cc(2P)

Γ(X→J/ψ) Γ(X→ψ(2S )) Rγ Rγ (spectrum)

A00 0 0 0.036 0.6 2.1 3.6 3.4

A01 1
10
gcc(2P)−DD 0.001 0.036 1.1 2.0 1.8 1.9

A10 −gcc(2P)−DD 0.011 0.060 6.1 6.2 1.0 1.1

parameter sets give correct mass the X(3872), 3871.69 MeV. The mass of the cc(1P) reduces by 0.1

MeV for A01 and by 22.6 MeV for A10 due to the coupling to DD∗. The results are summarized in

Table II.

We assume cc(2P) is created by the weak decay of the B-meson, and this cc(2P) in turn decays

into the finalψγ state: B→ cc(2P)K and then cc(2P)(→X(3872)) → ψγ. Here we calculated the latter

half of this process, cc(2P) → ψγ, and compare it to the experimental ψγ invariant mass spectrum.

The transfer strength of this process, dW/dE, can be calculated as follows.

dW(cc(2P) → ψγ)

dE
= −

1

π
Im ⟨cc(2P)|GQ

γ |cc(2P)⟩ (4)

= δ(Eψ + ωγ − E)
ϵ n

⟨ψ(Eψ)γ(ωγ , ϵ)|VγQ|cc(nP)⟩⟨cc(nP)|GQ|cc(2P)⟩
2

(5)

where GQ
γ[GQ] is the full propagator of the cc state with [without] the radiative decay term, VγQ is

the effective transfer potential from the cc(nP) to the ψγ state. The parameter set we use to calculate

the ⟨cc(nP)|GQ|cc(2P)⟩ term is essentially the same as parameter set A in Ref. [4]. Note that the

effects of the ρ and ωmeson widths are included in the self energy GQ.

We evaluate the factor ⟨ψ(Eψ)γ(ωγ , ϵ)|VγQ|cc(nP)⟩ from the matrix element ⟨J/ψγ| r |cc(1P)⟩ by

using the decay from the cc without the coupling to the continuum:

Γ cc(nP) → ψ+ γ =
ϵ

⟨ψ(Eψ)γ(ωγ , ϵ)|VγQ|cc(nP)⟩
2

Eψ+ωγ−Mcc(nP)

(6)

=
4

9
|Qc|

2α
ω3
γEψ

Mcc(nP)

⟨ψγ| r |cc(nP)⟩
2

. (7)

3. Results and discussion

The obtained widths are Γ(X(3872) → J/ψγ) = 0.6-6.1 keV and Γ(X(3872) → ψ(2S )γ) = 2.1-6.2

keV when we assume that the X(3872) is a bound state and use eq. (3). The ratio, Rγ, becomes 2.1-6.2,

which is close to the BaBar and LHCb results. This, however, does not mean that our results exclude

the Belle value because the ambiguity due to the unknown relative phase of the two cc components

is very large and because the results may change when we introduce the radiative decay from the

two-meson components.

The J/ψγ and the ψ(2S )γ mass spectra are shown in Figure 1. Both of the final J/ψγ and ψ(2S )γ

decay have a peak at the energy which corresponds to the X(3872) mass. We calculated the radiative

decay width of the X(3872) by integrating the strength of this peak up to the D+D− threshold, 3879.87

MeV. The ratio Rγ is listed in Table II under the entry Rγ (spectrum). The results are not very different

from those with the bound state approach. In addition to the peak at the X(3872) mass, there is an

enhancement in the ψ(2S )γ mass spectrum at around 3500-4000 MeV. This enhancement occurs

because of the cc(2P) pole, which exists at 3959− i
2
72 MeV for the A00 and A01 parameter sets while

it moves to 3969 − i
2
140 MeV for the A10 parameter set. Since the cc(2P) state decays only weakly

3

Table I. The factor ⟨ψ| r |cc(nP)⟩ calculated by the quark model (QM) as well as the harmonic oscillator

wave function with the size parameter b (H.O.) are shown. The decay width Γ of cc(nP) to ψ by the quark

model wave function are also listed with the experimental value in parentheses.

⟨J/ψ| r |cc(1P)⟩ ⟨J/ψ| r |cc(2P)⟩ ⟨ψ(2S )| r |cc(1P)⟩ ⟨ψ(2S )| r |cc(2P)⟩

QM [fm] 0.33 0.04 −0.41 0.52

H.O. 3
2
b 0 −b 5

2
b

Γ(cc(1P) → J/ψ) Γ(cc(2P) → J/ψ) Γ(cc(1P) → ψ(2S )) Γ(cc(2P) → ψ(2S ))

QM [keV] 207 (285) 21 - 157

< 2.1 (90%CL) (Belle[6])

= 2.46 ±0.64(stat) ±0.29(sys) (4.4σ) (LHCb[7]).

The data from these three experiments seem not to be inconsistent, though BaBar and LHCb prefer a

larger value whereas Belle prefers a smaller one. It is important to investigate the above ratio in order

to understand the nature of the X(3872), the most well-investigated exotic meson. The theoretical

works have been done with an assumption that the X(3872) is a bound state [8–11]. In this work, we

study the radiative decays of the X(3872) with the above hybrid model. Our approach here enables us

to deal with the X(3872) as a resonance and to produce the mass spectrum of J/ψγ and ψ(2S )γ.

2. Model

In the present model, the X(3872) consists ofD0D∗0,D+D∗−, J/ψω, J/ψρ, and the cc(1P) (χc1(1P))

and cc(2P) components. The radiative decay can occur from each of these components. Here we

assume that the decay occurs only from the cc(nP) components and neglect the other ones as a first

step [8]. The present results, especially the absolute values, may change when the decay from the

two-meson components are included. We, however, consider that the characteristic feature found in

the decay energy spectrum will probably remain unchanged if the other decay modes are included.

The the E1 transition from the cc components in the bound X(3872) to the final ψ, which stands

for J/ψor ψ(2S ), can be written as

Γ X(3872) → ψ+ γ =
4

9
|Qc|

2α
ω3
γEψ

MX
Zcc(1P)⟨ψ| r |cc(1P)⟩ + Zcc(2P)⟨ψ|r |cc(2P)⟩

2
(3)

where Qc is the electric charge of the charm quark, α is the fine-structure constant, ωγ and Eγ is the

energy of the final γ and ψ, respectively, MX is the X(3872) mass, Z2
cc(nP)

is the probability of each

cc(nP) component in the X(3872).

The transfer matrix element ⟨ψ|r|cc(nP)⟩ is calculated by using the quark model wave function

[12]. Their values and the corresponding radiative decay widths are listed in Table I together with

the matrix elements evaluated by the harmonic oscillator wave function. The width for the n = 1 and

ψ = J/ψ case can be calibrated from the observed χc1(1P) radiative decay width, which is shown in

Table I in parentheses. Note that the matrix element between the cc(2P) and J/ψ is very small; it is

zero if the harmonic oscillator wave function is employed. This means that the radiative decay to the

J/ψγ mode (and also the ratio Rγ) is sensitive to the size of the χc1(1P) component in the X(3872),

which is very small. Also, in order to see the cc(2P), one has to look into the final ψ(2S )γ decay

mode or into the difference between the final ψ(2S )γ and J/ψγ decay modes.

The relative phase of the cc(1P) and the cc(2P) components in the X(3872) wave function has not

been determined yet. We calculated three extreme cases: there is no cc(1P) component (case A00),

the decay from the two charmonia is constructive (case A01), and destructive (case A10). All the

2

S. Takeuchi, M. Takizawa, K. Shimizu,

arXiv:1602.04297 [hep-ph]

X(3872)

J/ψ

ψ(2S)

m
a

ss

1-- 1++

26

𝛾
𝛾



3. Heavy exotic hadrons -X, Y, Z hadrons-

ψ(4230)

aka Y(4260)

27



3. Heavy exotic hadrons -X, Y, Z hadrons-

too many ψ’?

ψ(4230) aka Y(4260)

2S

3S

4S
← new state between

ψ(3S) and ψ(4S)

B. Aubert et al. [BaBar], Phys. Rev. Lett. 95, 142001 (2005)

C. Z. Yuan et al. [Belle], Phys. Rev. Lett. 99, 182004 (2007)

Z. Q. Liu et al. [Belle], Phys. Rev. Lett. 110, 252002 (2013)

Y(4260)

π+π-

energy scan

1S

28

established

established

BaBar was searching X(3872) 

in 1--. They did not find

X(3872), but found Y(4260).



3. Heavy exotic hadrons -X, Y, Z hadrons-

too many ψ’?

ψ(4230) aka Y(4260)

2S

3S

4S
← new state between

ψ(3S) and ψ(4S)

B. Aubert et al. [BaBar], Phys. Rev. Lett. 95, 142001 (2005)

C. Z. Yuan et al. [Belle], Phys. Rev. Lett. 99, 182004 (2007)

Z. Q. Liu et al. [Belle], Phys. Rev. Lett. 110, 252002 (2013)

π+π-

energy scan

1S

29

established

established

M. Abikim et al. (BESSIII), Phys. Rev. Lett. 118, 092001 (2017)

Higher statistics

(1) Asymmetry in the cross section

(2) Shift-position of the peak mass to 

the lower: ψ(4230)

BaBar was searching X(3872) 

in 1--. They did not find

X(3872), but found Y(4260).



3. Heavy exotic hadrons -X, Y, Z hadrons-

ψ(4230) aka Y(4260)
mystery of decay patterns

Y(4260) should decay to DDbar, but...

?DDbar
However, this decay

is not observed...

Note: ψ’’(3770) (JPC=1--), whose 

mass is slightly above DDbar, 

decays to DDbar dominantly (B.R. 
93% !) rather than to J/ψπ+π-.

30

Seeming contradictory…

“Fall-apart process”
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3. Heavy exotic hadrons -X, Y, Z hadrons-

ψ(4230) aka Y(4260)
mystery of decay patterns

Y(4260) can decay to DDbar, but...

From Olsen et al. Rev. Mod. Phys. 90, 015003 (2018)

Original figure: BESS, Phys. Rev. Lett. 88, 101802 (2002)

=Y(4260)

There is no decay from Y(4260) to DDbar. 
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3. Heavy exotic hadrons -X, Y, Z hadrons-

ψ(4230) aka Y(4260)
Hybrid state???

F. E. Close and P. R. Page, 2005, Phys. Lett. B 628, 215 (2005)

E. Kou and O. Pene, 2005, Phys. Lett. B 631, 164 (2005)

S.-L. Zhu, 2005, Phys. Lett. B 625, 212 (2005)

gluonic excitation modes

“string excitation”

c

c
Σ, Π, Δ, Φ, ...
(S, P, D, F, ...)

ccg hybrid

Candidate observed in lattice calculations:

Liu, L., G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, P. Vilaseca, J. J. Dudek, R. G. 

Edwards, B. Joo, and D. G. Richards (Hadron Spectrum), 2012, J. High Energy Phys. 07 126

Gluons appear as dynamical d.o.f.



3. Heavy exotic hadrons -X, Y, Z hadrons-

ψ(4230) aka Y(4260)
Hybrid state???

QQbar potential
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Figure 16. The excitation spectrum of the con-
fining flux . T he energy levels of N= 1,2,3,4 Gold-
stone excitations are shown in the insert.

and ∆ g form the fi rst band above theΠu ; the Σ +
u ,

Σ−
u , Π′

u /Φu , and ∆ u form another band. The Σ−
g

is the highest level at large rQ Q . T his band struc-
ture breaks down as the separation of the sources
decreases below 2 fm. In particular, two levels,
the Σ−

g and Σ−
u , drop far below their degenerate

partners as the separation between sources be-
comes small. Note that for rQ Q above 0.5 fm, all
of the excitations shown are stable with respect to
glueball decay. As the separation of the sources
decreases below 0.5 fm, the excited levels even-
tually become unstable as their gaps above the
ground state Σ +

g exceed the mass of the lightest
glueball.

The level orderings and approximate degen-
eracies of the gluon energies at large separation
match those expected of the Goldstone modes.
However, the precise Goldstone gap behaviour is
not observed. The two Σ− states are in violent
disagreement with expectations from a fluctuat-
ing string. Note also that the results clearly dis-
agree with the energy spectrum of a Nambu-Goto
string naively applied in four continuous space-
time dimensions.

These results are rather surprising and cast se-
rious doubts on the validity of treating glue in
terms of a fluctuating string for quark-antiquark

separations less than 2 fm. Note that such a con-
clusion does not contradict the fact that the Σ +

g

ground state energy rises linearly for rQ Q as small
as 0.5 fm. A linearly-rising term is not necessar-
ily indicative of a string as we have seen in earlier
examples. For rQ Q greater than 2 fm, there are
some tantalizing signatures of Goldstone mode
formation, yet significant disagreements still re-
main. To what degree these discrepancies can be
explained in terms of distortions of the Goldstone
mode spectrum arising from the spatial fixation
of the quark and antiquark sources (clamping ef-
fect) is currently under investigation [42].

For reasons explained here I remain puzzled
and reserved on reported results that large W il-
son loops in lower dimensional models agree with
the predictions of a fluctuating string [57] even
for relatively small separation of the sources.

F lu x F ission (Str i n g B reak in g )
The confining flux is expected to fission into a

pair of static mesons, also known as string break-
ing, when its energy is large enough to pair pro-
duce light dynamical quarks. At large separation
of the color sources the static potential, as cal-
culated from W ilson loops, describes the force
between static mesons which are color sources
screened by light quark fields ( like the static B
meson in the infinite b-quark mass limit) . W e
expect the linearly rising potential to asymptot-
ically cross over into Yukawa form controlled by
the lowest mass exchange (pion). The attractive,
or repulsive nature of the Yukawa force will de-
pend on the spin-isospin quantum numbers of the
static BB pair which is not taken into account in
W ilson loop operators. The crossover range is
expected to occur at a separation where the en-
ergy of the confining flux exceeds twice the static
meson energy.

In QCD simulations with two flavors of dy-
namical quarks, where the crossover range has
been reached, new results were reported at the
conference (Fig.17) without any visible string
breaking effects [1,51,52]. I t was suggested us-
ing strong coupling ideas [53] that string break-
ing is a mixing phenomenon, involving both the
string and the static two-meson state. Thus, in
order to confi rm the mixing picture, the conven-

J. Kuti, Nucl. Phys. B Proc. Suppl. 73, 72 (1999)

c
c

conventional modesV(r)
rotation

principal number

gluonic excitation modes

“string excitation”

c

c
Σ, Π, Δ, Φ, ...
(S, P, D, F, ...)

33



3. Heavy exotic hadrons -X, Y, Z hadrons-

ψ(4230) aka Y(4260)
Hybrid state???

QQbar potential K. J. Juge, J. Kuti, C. Morningstar, Phys. Rev. Lett. 16, 161601 (2003)

c
c

conventional modes
rotation

principal number

gluonic excitation modes

“string excitation”

c

c
Σ, Π, Δ, Φ, ...
(S, P, D, F, ...)

(Cf. G. S. Bali, A. Pineda, Phys. Rev. D 69, 094001 (2004))

34



3. Heavy exotic hadrons -X, Y, Z hadrons-

ψ(4230) aka Y(4260)
Hybrid state??? K.J. Juge, J. Kuti, C.J. Morningstar,

Phys. Rev. Lett. 82, 4400 (1999)

hybrid states!

36

wave functions

inter-quark potentials

mass spectragluon-excited 𝒄ത𝒄 potential

𝒄ത𝒄 wave function in

hybrid states!

c

Hybrid
c



3. Heavy exotic hadrons -X, Y, Z hadrons-

ψ(4230) aka Y(4260)
Hybrid state???

M. Berwein, N. Brambilla, J.T. Castela, A. Vairo, Phys. Rev. D92, 114019 (2015)

See for early applications to Y(4260):

F. E. Close and P. R. Page, Phys. Lett. B 628, 215 (2005)

E. Kou and O. Pene, Phys. Lett. B 631, 164 (2005)

Cf. review: C. A. Meyer, E. S. Swanson, Prog. Part. Nucl. Phys. 82, 21 (2015)

Theoretical results

Experiment

Y(4260)

: Suppression to DDbar decay (?)

37

→ 𝜒𝑐1(4140) → ψ(4160) → ψ(4360) → ψ(4660)



3. Heavy exotic hadrons -X, Y, Z hadrons-

ψ(4230) aka Y(4260)

38

BESIII, Phys. Rev. Lett. 118, 092001 (2017) BESIII, Phys. Rev. Lett. 118, 092002 (2017)

Olsen et al. Rev. Mod. Phys. 90, 015003 (2018)

No single Breit-Wigner shape

“Y(4260)”

“Y(4360)”

Newest “Y(4260)” up to date

(reanalysis by higher statistics)
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3. Heavy exotic hadrons -X, Y, Z hadrons-

ψ(4230) aka Y(4260)
Lattice QCD (𝑚𝜋 ≈ 400 MeV)

JPC exotic
1-+

JPC exotic
0+-, 2+-

Liu et al. JHEP07(2012)125

𝑀𝜂𝑐 = 2984 MeV

Exp.

Charmonium

Hybrid (ground state)

Hybrid (excited state)

Mass of the hybrid (4285) seems consistent

with 𝝍(𝟒𝟐𝟑𝟎) aka 𝝍(𝟒𝟐𝟔𝟎)!

Hybrid (4285)

→ We should explore the other hybrids including JPC exotics!!

c

Hybrid
c



J.J. Dudek, R.G. Edwards, P. Guo, C.E. Thomas, Phys. Rev. D 88, 094505 (2013)

Cf. M.R. Stephaerd, J.J. Dudeck, R E. Mirchell, Nat. Phys. 534, 487 (2016)

red: compatible with qqbar assignment

blue: hybrids (qqbar+gluon excitation)

JPC

Lattice computation of light meson spectrum 
@mπ=392 MeV

40

𝜋

𝜔

Hybrids
JPC exotic
1-+, 0+-, 2+-

scalar mesons
𝒇𝟎(𝟗𝟖𝟎), 𝒂𝟎(𝟗𝟖𝟎), …

Hybrid
Hybrid

Hybrid



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zc(4430)+

41



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zc(4430)+

Charged charmonium

c c

Charge neutral

c c

Charged (+)
Four quarks at least

ud

First observation of genuinely “four-quark”

42

Note: ccbar should be contained, because the final state of Zc(4430) includes a charmonum.



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zc(4430)+

Charged charmonium
S. K. Choi et al. [Belle],

Phys. Rev. Lett. 100, 142001 (2008)

c c

Charged (+)

ud

B. Aubert et al. [BaBar],

Phys. Rev. D 79, 112001 (2009)

Zc(4430)+

K. Chilikin et al. [Belle], Phys. Rev. D 88, 074026 (2013)

R. Aaij et al. [LHCb], Phys. Rev. Lett. 112, 222002 (2014)

JP = 0-, 1+, 1-, 2+

What is the quantum number (JP)?

43



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zc(4430)+

Does this peak really indicate a resonance?

Argand plot (ψ’π+) R. Aaij et al. [LHCb],

Phys. Rev. Lett. 112, 222002 (2014)

Yes, this is consistent to be a resonance!!

44
(Necessary condition for being a resonance: If resonance, then circle in Argand plot.)



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zc(4430)+

Does this peal really indicate a resonance?

Argand plot (review)

18 

Klaus Peters - PWA Primer 

Introducing Partial Waves 

• Schrödinger‘s Equation 

Angular Amplitude 

Dynamic Amplitude 

Slide by Klaus Peters (GSI)

Charm 2006

: scattering wave

45



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zc(4430)+

Does this peal really indicate a resonance?

Argand plot (review)

21 

Klaus Peters - PWA Primer 

Standard Breit-Wigner 

• Full circle in the  
Argand Plot 

• Phase motion  
from 0 to π 

Intensity I=ΨΨ* 

Phase δ Speed dφ/dm 

Argand Plot 

δ=π/2

Resonance

46

Slide by Klaus Peters (GSI)

Charm 2006

18 

Klaus Peters - PWA Primer 

Introducing Partial Waves 

• Schrödinger‘s Equation 

Angular Amplitude 

Dynamic Amplitude 
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3. Heavy exotic hadrons -X, Y, Z hadrons-

LHCb, Phys. Rev. Lett. 112, 222002 (2014) LHCb, Phys. Rev. D 92, 112009 (2015)

Cf. Olsen et al. Rev. Mod. Phys. 90, 015003 (2018)

Belle, Phys. Rev. D 78, 072004 (2008)

Argand's plot for Zc(4200)

Belle, Phys. Rev. D 90, 112009 (2014)

Other charged states: Zc(4200)+, Zc(4050)+, Zc(4250)+

What exactly are they？



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zc(3900)+

48



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zc(3900)+

c c

Charged

c c

Charge neutral

ud

Charged charmonium
Z. Q. Liu et al. [Belle],

Phys. Rev. Lett. 110, 252002 (2013)

Cf. M. Ablikim et al. [BESSIII],

Phys. Rev. Lett. 110, 252001 (2013)

Zc(3900)+

49
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Zc(3900)+

Charged charmonium

BESIII, Phys. Rev. Lett. 112, 022001 (2014)

Cf. Olsen et al. Rev. Mod. Phys. 90, 015003 (2018)

JP=1+

Neutral partner: Zc(3900)0 BESIII, Phys. Rev. Lett. 115, 112003 (2015)

BESIII, Phys. Rev. Lett. 115, 112002 (2015)

↪︎

cc
ud

cc
du

cc
uu+dd

Zc(3900)+ Zc(3900)０ Zc(3900)-
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3. Heavy exotic hadrons -X, Y, Z hadrons-

related state: Zc(4020)+

Charged charmonium

BESIII, PRL111, 242001 (2013) BESIII, PRL113, 212002 (2014) BESIII, PRL112, 132001 (2014)

Zc(3900)+

Zc(4020)+
paired states？

(See next page.)

Cf. Olsen et al. Rev. Mod. Phys. 90, 015003 (2018)

Zb(10610)+

Zb(10650)+

Bottom version

We will discuss Zb’s in detail later.
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3. Heavy exotic hadrons -X, Y, Z hadrons-
Brief summary of charged Zc’s

From Olsen et al. Rev. Mod. Phys. 90, 015003 (2018)

Zc(3900)+~DD*

Zc(4020)+~D*D*
Their masses are close to the D(*)D* thresholds.

Does this suggest the hadronic molecules？



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zc(3900)+

Lattice QCD
S. Prelovsek and L. Leskovec, Phys. Lett. B 727, 172 (2013)

S. Prelovsek, C. B. Lang, L. Leskovec, and D. Mohler, Phys. Rev. D 91, 014504 (2015)

Y. Chen et al., Phys. Rev. D 89, 094506 (2014)

Y. Ikeda et al., Phys. Rev. Lett. 117, 242001 (2016)

DD*bar scattering

ρηc scattering

π J/ψ scattering

d
c

u
c

53



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zc(3900)+

Lattice QCD

“HAL QCD” method

S. Prelovsek and L. Leskovec, Phys. Lett. B 727, 172 (2013)

S. Prelovsek, C. B. Lang, L. Leskovec, and D. Mohler, Phys. Rev. D 91, 014504 (2015)

Y. Chen et al., Phys. Rev. D 89, 094506 (2014)

Y. Ikeda et al., Phys. Rev. Lett. 117, 242001 (2016)

N. Ishii, S. Aoki, and T. Hatsuda, Phys. Rev. Lett. 99, 022001 (2007)

S. Aoki, T. Hatsuda, and N. Ishii, Prog. Theor. Phys. 123, 89 (2010)

② Schrödinger equation (inverse problem)

inter-hadron potential

① Calculate Nambu-Bethe-Salpeter wave function            (correlation function)

hadron basis

54



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zc(3900)+

Lattice QCD
Y. Ikeda et al., Phys. Rev. Lett. 117, 242001 (2016)

55

→
Correct

thresholds



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zc(3900)+

Lattice QCD
Y. Ikeda et al., Phys. Rev. Lett. 117, 242001 (2016)

strong

strong

Strongest potential in c quark

exchange
→ Not a simple DD*bar molecule

56



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zc(3900)+

Lattice QCD

Y. Ikeda et al.,

Phys. Rev. Lett. 117, 242001 (2016)

ρηc→ρηc

Very far from real axis....

J/ψπ→J/ψπ

DD*bar→DD*bar

57

Bump (cusp effect)

How about Zc(4020)+?

(possible partner)



3. Heavy exotic hadrons -X, Y, Z hadrons-

Bottom
Tetraquark

58



3. Heavy exotic hadrons -X, Y, Z hadrons-

Belle’s main search:

Υ(4S) as BBbar factory

Belle can search Υ(5S) 

59



Yb(10860)

3. Heavy exotic hadrons -X, Y, Z hadrons-

60



3. Heavy exotic hadrons -X, Y, Z hadrons-

Yb(10860)

JP=1--

ccbar J/ψ(1S)

ψ(2S)

ψ(3S)

ψ(4S)

3097

3686

4040

4416

3880

3740

4020

0

589

643

783

923

943

1319

Analogue of Y(4260)?

DDbar

DD*bar

D*D*bar

bbbar
Υ  (1S)

Υ  (2S)

Υ  (3S)

Υ  (4S)

Υ  (6S)

9460

10023

10355

10579

11020

10604

10558

10650

563

0

895

1098
1119

1190

1560

1144

BBbar
BB*bar
B*B*bar

Y(4260)

“Υ(5S)” aka
Yb (10860)

K.-F. Chen et al. [Belle], 

Phys. Rev. D 82, 091106 (2010)

Charmonium Bottomonium

1. Above BBbar threshold?

2. Between Υ(nS) and Υ((n+1)S)? 

61

c

Hybrid
c
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Yb(10860)
Analogue of Y(4260)?

From Olsen et al. Rev. Mod. Phys. 90, 015003 (2018)

← Why is Y(5S) not just in the middle of Y(4S) and Y(6S)？

But Yb(10860) decays to BBbar (B.R.76%) 

unlike Y(4260).



3. Heavy exotic hadrons -X, Y, Z hadrons-

Yb(10860)
Analogue of Y(4260)?

K.-F. Chen et al. [Belle], 

Phys. Rev. D 82, 091106 (2010)

σ0: e+e-→μ+μ-

63

← Enhanced

Yb 

← Why is Y(2S)ππ enhanced？
(Is Y(5S) not a simple bbbar?

Decays from Y(5S)

There should be some other components

except for bbbar (hybrid, or mixture with bbbar？)
Note: Yb(10860) decays to BBbar in contrast to

Y(4260).



3. Heavy exotic hadrons -X, Y, Z hadrons-

hb(2P)
by-product... I. Adachi et al. [Belle],

Phys. Rev. Lett. 108, 032001 (2012)

64

(accidental) first discovery of hb(2P)



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+

Zb(10650)+

65



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

Charged bottomonium A. Bondar et al. [Belle],

Phys. Rev. Lett. 108, 122001 (2012)

JP=1+

JP=2+

favored

unfavored

Zb(10610)+ 

Zb(10650)+ 

Zb(10650)+ Zb(10610)+ 

Zb(10610)+ 

Zb(10650)+ 
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

Charged bottomonium A. Bondar et al. [Belle],

Phys. Rev. Lett. 108, 122001 (2012)

Zb(10650)+ 

Zb(10650)+ 

Zb(10610)+ 

Zb(10610)+ 

67



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

Charged bottomonium A. Bondar et al. [Belle],

Phys. Rev. Lett. 108, 122001 (2012)

summary table

68



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

Charged bottomonium A. Bondar et al. [Belle],

Phys. Rev. Lett. 108, 122001 (2012)

10604

10558

10650

BBbar

BB*bar

B*B*bar Zb(10650)+

Zb(10610)+ 

JP=1+

1- 1-

0- 1-

0- 0-

① Isospin partner?  Zb
0

② BB*bar, B*B*bar molecule?

69



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

Charged bottomonium

① Isospin partner?  Zb
0

Zb(10610)0 

Zb(10610)0 

Zb(10610)0 

Zb(10610)0 was discovered, but Zb(10650)0 could not be seen due to low statistics...

P. Krokovny et al. [Belle],

Phys. Rev. D 88, 052016 (2013)

C-parity of Zb(10610)0: C=-1 (ψ(JPC=1--)&π0(JPC=0-+))

70



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

Charged bottomonium

② BB*bar, B*B*bar molecule?

I. Adachi et al., [Belle],

arXiv:1209.6450 [hep-ex]

Zb(10610)+ 

Zb(10650)+ 

Zb(10650)+ 

Zb(10610)+ and Zb(10650)+ seem to contain much component of BB*bar and B*B*bar.
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

Charged bottomonium

② BB*bar, B*B*bar molecule?

I. Adachi et al., [Belle],

arXiv:1209.6450 [hep-ex]

Zb(10610)+ and Zb(10650)+ seem to contain much component of BB*bar and B*B*bar.

→ Molecule picture?

branching fraction %

72



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

Though Zb(10610)+ and Zb(10650)+ may not be simple hadronic molecules,

this picture provides us with a good starting point to under stand those properties.

Hint from experiments:

Are there equal weights for S=1 and S=0？

Br[Zb→Υ π] ≈ Br[Zb→hbπ]

If Zb are B*B*bar and BB*bar molecules (QqbarQbarq),

heavy quark spins 1 and 0 should exist with same fraction!
A. E. Bondar, A. Garmash, A. I. Milstein, R. Mizuk, M. B. Voloshin, Phys. Rev. D 84, 054010 (2011)

73

QQbar qqbar

QQbar spins



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

Many papers…

A. E. Bondar, A. Garmash, A. I. Milstein, R. Mizuk, and M. B. Voloshin, Phys. Rev. D 84, 054010 (2011)

T. Mehen and J. W. Powell, Phys. Rev. D 84, 114013 (2011)

M. Cleven, F.-K. Guo, C. Hanhart, and U.-G. Meissner, Eur. Phys. J. A 47, 120 (2011)

J.-R. Zhang, M. Zhong, and M.-Q. Huang, Phys. Lett. B 704, 312 (2011)

D. V. Bugg, Europhys. Lett. 96, 11002 (2011)

J. Nieves and M. Pavon Valderrama, Phys. Rev. D 84, 056015 (2011)

Z.-F. Sun, J. He, X. Liu, Z.-G. Luo, and S.-L. Zhu, Phys. Rev. D 84, 054002 (2011)

M. B. Voloshin, Phys. Rev. D 84, 031502 (2011)

S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys. Rev. D 86, 014004 (2012)

Y. Yang, J. Ping, C. Deng, and H.-S. Zong, J. Phys. G 39, 105001 (2012)

C.-Y. Cui, Y.-L. Liu, and M.-Q. Huang, Phys. Rev. D 85, 074014 (2012)
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

B* B*
10650 MeV

B* B
10604 MeV

B B*
10604 MeV

B B
10558 MeV

same mass
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

B B
10558 MeV

mass

threshold
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

B B
10558 MeV

mass

threshold

B* B
10604 MeV

B B*±
threshold

77



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

B* B*
10650 MeV

B B
10558 MeV

B* B
10604 MeV

B B*±

mass

threshold

threshold

threshold
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

Classification of B(*)B(*)bar states

C-parity is defined only for Iz=0 (I=1)

S. Ohkoda, et al.,

Phys. Rev. D86, 014004 (2012)
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation
C-parity of B(*)B(*)bar

CB*C-1=B*barCBC-1=Bbar

① BBbar: CBBbarC-1 = (CBC-1)(CBbarC-1) = BbarB = BBbar

② BB*bar±B*Bbar:

C(BB*bar±B*Bbar)C-1

= (CBC-1)(CB*barC-1)±(CB*C-1)(CBbarC-1)

= BbarB*±B*bar(B)

= ±(BB*bar±B*Bbar)

③ B*B*bar: C(B*B*bar)S=0,1,2C
-1= (-1)S B*B*bar

44. C lebsch-G ordan coeffi ci en ts 1

44. CLE B SCH -G OR D A N COE F F I C I E N T S, SPH E R I CA L H A R M ON I CS,

A N D d F U N CT I ON S

Note: A square-root sign is to be understood over every coefficient, e.g. , for −8/15 read − 8/15.

Y 0
1 =

3

4π
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Y 1
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8π
sin θeiφ
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j
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√
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=
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0,0 =
3

2
cos2 θ−

1

2

F igure 44.1: The sign convention is that of W igner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, W iley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).

J = 0,1,2

j1, j2 = 1
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

JPC=1+-, I=1

BBbar

BB*bar±B*Bbar

B*B*bar

0+

1+

0+

Swave 0+

Swave 1+

Dwave 1+,2+,3+0- 1-

1- 1-

1+

2+

Swave 0+

Swave 1+

Dwave 1+,2+,3+

Swave 2+

Dwave 0+,1+,2+,3+,4+

spinP JP C-parity

+1

+1

-1

-1

+1

+1

minus

±1

±1

✔

✔

✔

✔

1+

1+

2+
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from experiments
angular

momentum

0- 0-



Swave 2+

Dwave 1+,2+,3+

Swave 1+

Swave 0+

Dwave 1+,2+,3+

Swave 1+

3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

JPC=1++, I=1

BBbar

BB*bar±B*Bbar

B*B*bar

0+

0- 0-

0- 1-

1- 1-

+1

+1

-1

-1

+1

+1

plus

±1

±1

1+

0+

1+

2+

1+

1+

2+

✔

✔

✔

If
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spinP JP C-parity
angular

momentum

Dwave 0+,1+,2+,3+,4+

Swave 0+
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

Classification of B(*)B(*)bar states

C-parity is defined only for Iz=0 (I=1)

S. Ohkoda, et al.,

Phys. Rev. D86, 014004 (2012)
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

The Schrödinger equation

What is the potential component Vij?
(light meson exchange potentials)

Ki : kinetic term, Vij : potential term (i,j=1,2,3,4)

JPC=1+-,I=1

S. Ohkoda, et al.,

Phys. Rev. D86, 014004 (2012)
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B(*) B(*)

light meson
exchange



85

3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

π, ω, ρ meson exchange potentials
S. Ohkoda, et al.,

Phys. Rev. D86, 014004 (2012)

B* B*

π, ω, ρ

B B*

π, ω, ρ

B* B

π, ω, ρ

-

hadronic molecule interpretation

What are the π, ω, ρ potentials？



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

HQS + chiral symmetry
86



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

HQS + chiral symmetry
tensor potential

central potential

87



② Constructing effective Lagrangian (leading order of mQ→∞)

chiral covariant derivative:

Example of vertex structure (axial-vector coupling)

B B* B*

B* B B*

π π π

We will see details later.

Non-linear chiral transformation

Non-linear rep. of π field:

Vector current: Axial-vector current:
(even # of π) (odd # of π)

invariant under HQS
and chiral symmetry

Review: πB(*)B* coupling from effective theory
3. Heavy exotic hadrons -X, Y, Z hadrons-

time
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

2 questions

JPC=1+-,I=1

Answer: Heavy quark spin (HQS) symmetry make them mixed.

① Why do we consider BB*bar(B*Bbar) and B*B*bar simultaneously? 

BB*bar ± B*Bbar sector B*B*bar sector

89

HQS



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

JPC=1+-,I=1

B meson:

B* meson:

Transformation for heavy quark spin rotation

① BB*bar ± B*Bbar sector:

90



② B*B*bar :

91



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

② Why do we consider S-wave and D-wave simultaneously? 

JPC=1+-,I=1

BB*bar ± B*Bbar sector B*B*bar sector

2 questions

HQS

92



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

② Why do we consider S-wave and D-wave simultaneously? 

JPC=1+-,I=1

BB*bar ± B*Bbar sector B*B*bar sector

Answer: Tensor potential mixes L and L±2 components.

2 questions

HQS

93



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+
JPC=1+-,I=1

② OPEP for B(*)B(*)bar:

Q qbar q Qbar

π

Example

Light spin triplet, S-wave

Light spin triplet, D-wave

Light spin triplet, S-wave

Tensor operator
hadronic molecule interpretation

N N

① OPEP for NN:

→

Tensor:

S-wave and D-wave mixing (spin=1)

π

94



B B*bar

π

B* Bbar(1) BB*bar→B*Bbar

B* B*bar

π

B* B*bar(2) B*B*bar→B*B*bar

B Bbar

π

B* B*bar(3) BBbar→B*B*bar

B B*bar

π

B* B*bar(4) BB*bar→B*B*bar

Polarization vector (B*):

Spin 1 operator (B*):

Tensor operator:

95



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

JPC=1+-,I=1

Tensor

Tensor Tensor

TensorTensor Tensor Tensor

Tensor

Tensor
Tensor Tensor

Tensor

Central potential:

Tensor potential:

HQS

HQS

HQS

HQS

Components

96

Summary table: mixing effects (HQS, tensor potential)



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

① Kinetic term

② OPEP

③ Vector-meson exchange potential

JPC=1+-,I=1

Tensor potential

97



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

JPC=1+-,I=1

10604

10558

10650

BBbar

BB*bar

B*B*bar

B*B*bar

BB*bar

BBbar

scattering

state

scattering

state

scattering

state
interaction

interaction

interaction

Solving scattering problem

with multi-channel

98



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

θ
k

k

z

How to solve scattering problem? (review)

① Partial wave decomposition

Partial wave

amplitude

asymptotic state:

(phase shift) 

② Resonance (definition by phase shift)

Pole as

complex energy

decay width:

Matching (direct) method: finding δl(k)

 Complex scaling method: finding Er+iΓ/2 S. Aoyama T. Myo, K. Kato, K. Ikeda,

Prog. Theor. Phys. 116, 1 (2006)

π/2

k
kr

δl

JPC=1+-,I=1

resonance

↓
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

θ
k

k

z

How to solve scattering problem? (review)

asymptotic state:

(phase shift) 

JPC=1+-,I=1

Typical mechanisms of resonances

① Centrifugal potential ② Feshbach resonance ③ E-dependent potential

100
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k
kr

δl
resonance

↓



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

θ
k

k

z

How to solve scattering problem? (review)

asymptotic state:

(phase shift) 

JPC=1+-,I=1

Typical mechanisms of resonances

r

V(r)

centrifugal potential

L(L+1)/2μr2

V(r)

Veff(r)

① Centrifugal potential ② Feshbach resonance ③ E-dependent potential

101
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δl
resonance

↓



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

θ
k

k

z

How to solve scattering problem? (review)

asymptotic state:

(phase shift) 

JPC=1+-,I=1

Typical mechanisms of resonances

r

V(r)

centrifugal potential

L(L+1)/2μr2

V(r)

Veff(r)

Energy

A+B

A’+B’

quasi-bound state
(resonance)

A+B → A’+B’ → A+B

① Centrifugal potential ② Feshbach resonance ③ E-dependent potential

102
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k
kr

δl
resonance

↓



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

θ
k

k

z

How to solve scattering problem? (review)

asymptotic state:

(phase shift) 

JPC=1+-,I=1

Typical mechanisms of resonances

① Centrifugal potential ② Feshbach resonance ③ E-dependent potential

r

V(r)

centrifugal potential

L(L+1)/2μr2

V(r)

Veff(r)

Energy

A+B

A’+B’

quasi-bound state
(resonance)

Weinberg-Tomozawa interaction
(Chiral symmerty for NG boson)

E

π

N

Kbar

Σ

Λ(1405) baryon resonance

A+B → A’+B’ → A+B

103
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k
kr

δl
resonance
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

← bound state

← resonant state

Numerical result

B(*) B(*)

Hadronic molecule

S. Ohkoda, et al.,

Phys. Rev. D86, 014004 (2012)
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

Numerical result

← bound state

← resonant state

S. Ohkoda, et al.,

Phys. Rev. D86, 014004 (2012)

Feshbach resonances 105

✔

✔

✔

✔✔

✔
relevant

channels

exp.

exp.



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

Other effects?

① Υπ, hbπ loop Method by M. R. Pennington and D. J. Wilson, Phys. Rev. D 76, 077502 (2007)

A. Loop propagator: 

B. Dispersion relation:

C. Parametrization:

D. Numerical result
- gn and gm are determined from Zb→Υπ, hbπ

- s0 ≈ 9000 MeV 

Mass is slightly shifted upwards.106



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

Other effects?
S. Ohkoda, S. Yasui, and A. Hosaka, Phys. Rev. D 89, 074029 (2014)② Triangle diagram effect

BB*bar or B*B*bar merging into the final state Υ
(vector meson dominance)

Pion emission by B*bar

Zb’s dissociation into BB*bar or B*B*bar

(form factor with cutoff ΛZ)

Zb(10610) decay width Zb(10650) decay width

It seems consistent with experiments.

[MeV] [MeV]

107

(decay width)



3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

A. E. Bondar, A. Garmash, A. I. Milstein, R. Mizuk, and M. B. Voloshin, Phys. Rev. D84, 054010 (2011)

M. B. Voloshin, Phys. Rev. D 84, 031502 (2011)

S. Ohkoda, S. Yasui, and A. Hosaka, Phys. Rev. D 89, 074029 (2014)

Predictions for γ decay
③ Radiative decay (IZ=0)

108
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Zb(10610)+ & Zb(10650)+

hadronic molecule interpretation

1.0 2.6 4.1

1.0 2.5 3.8

Branching ratios

③ Radiative decay (IZ=0)
Predictions for γ decay

109
A. E. Bondar, A. Garmash, A. I. Milstein, R. Mizuk, and M. B. Voloshin, Phys. Rev. D84, 054010 (2011)

M. B. Voloshin, Phys. Rev. D 84, 031502 (2011)

S. Ohkoda, S. Yasui, and A. Hosaka, Phys. Rev. D 89, 074029 (2014)

(including  phase space factor)

← prediction

← prediction



3. Heavy exotic hadrons -X, Y, Z hadrons-
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Charm
Pentaquark

111



Pc(4380)

Pc(4450)

3. Heavy exotic hadrons -X, Y, Z hadrons-
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Pc(4380) & Pc(4450)
first charm pentaquark

113



CERN Accelerating science Sign in Directory

Updates Press releases

CERN’s LHCb experiment reports

observation of exotic pentaquark particles

14 Jul 2015

Geneva, 14 July 2015. Today, the LHCb experim ent at CERN’s Large Hadron Collider has reported the

discovery of a class of particles known as pentaquarks.  The collaboration has subm itted a paper reporting

these f indings to the journal Physical Review Letters.

“The pentaquark is not just any new particle,” said LHCb spokesperson Guy Wilkinson. “It represents a way

to aggregate quarks, namely the fundamental constituents of ordinary protons and neutrons, in a pattern that

has never been observed before in over f ifty years of experimental searches. Studying its properties may allow

us to understand better how ordinary matter, the protons and neutrons from which we’re all made, is

constituted.”

Our understanding of the structure of m atter was revolutionized in 1964 when Am erican physicist,

Murray Gell-Mann, proposed that a category of particles known as baryons,  which includes protons and

neutrons, are com prised of three fractionally charged objects called quarks,  and that another category,

m esons, are form ed of quark-antiquark pairs. Gell-Mann was awarded the Nobel Prize in physics for this

work in 1969. This quark m odel also allows the existence of other quark com posite states,  such as

pentaquarks com posed of four quarks and an antiquark.  Until now, however, no conclusive evidence for

pentaquarks had been seen.

LHCb researchers looked for pentaquark states by exam ining the decay of a baryon known as Λ

(Lam bda b) into three other particles, a J/ψ  (J-psi), a proton and a charged kaon. Studying the spectrum

of m asses of the J/ψ and the proton revealed that interm ediate states were som etim es involved in their

production. These have been nam ed P (4450)  and P (4380) , the form er being clearly visible as a peak

in the data, w ith the latter being required to describe the data fully .

“Benef itting from the large data set provided by the LHC, and the excellent precision of our detector, we have

examined all possibilities for these signals, and conclude that they can only be explained by pentaquark

states”, says LHCb physicist Tom asz Skwarnicki of Syracuse University.

"More precisely the states must be formed of two up quarks,  one down quark, one charm quark and one anti-

charm quark.”

Earlier experim ents that have searched for pentaquarks have proved inconclusive.  Where the LHCb

experim ent dif fers is that it has been able to look for pentaquarks from  m any perspectives,  w ith all

pointing to the sam e conclusion. It’s as if the previous searches were looking for silhouettes in the dark,

whereas LHCb conducted the search w ith the lights on, and from  all angles. The next step in the analysis

w ill be to study how the quarks are bound together w ithin the pentaquarks.

 “The quarks could be tightly bound,” said LHCb physicist Lim ing Zhang of Tsinghua University, “or they

could be loosely bound in a sort of meson-baryon molecule,  in which the meson and baryon feel a residual

strong force similar to the one binding protons and neutrons to form nuclei.”

More studies w ill be needed to distinguish between these possibilities,  and to see what else pentaquarks

b

-

c
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c
+

Media visits News Calendar Resources Contact us
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Science & Environment
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Safari 省電力

クリ ッ クして  Flash プラグインを開始

14 July 2015  Science & Environment

Large Hadron Collider discovers new
pentaquark particle
By Paul Rincon

Science editor, BBC News website

An illustration of one possible layout of quarks in a pentaquark particle such as those seen at LHCb

(showing five tightly-bonded quarks)
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Pc(4380) & Pc(4450)
first charm pentaquark

116



LHCb, Phys. Rev. Lett. 115, 072001 (2015) 

Pc(4380) Γ=205 MeV

Pc(4450) Γ=39 MeV
Note: Pc(4450) is now Pc(4457).

3. Heavy exotic hadrons -X, Y, Z hadrons-
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Argand Plot

3. Heavy exotic hadrons -X, Y, Z hadrons-
LHCb, Phys. Rev. Lett. 115, 072001 (2015) 
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4500

4400

4300

4200

4100

4000

3090

J/ψ+N
4035 1/2-, 3/2-

D+Λc
4156 1/2-

D*+Λc
4296 1/2-, 3/2-

D*+Σc*
4530 1/2-, 3/2-, 5/2-

ηc+N
3921 1/2-

hc+N
4463 1/2+

χc0+N
4353 1/2+

χc1+N
4448 1/2+, 3/2+

χc2+N
4494 3/2+, 5/2+

J/ψ+Δ
4329 1/2-, 3/2-, 5/2-

ηc+Δ
4216  3/2-

Thresholds of hadron states above 4 GeV

Pc(4380)

3/2- (?)

Pc(4450)

5/2+ (?)

MeV

Spin-parity JP ?

Mostly favored

D+Σc
4325 1/2-

D+Σc*
4390 1/2-, 3/2-

D*+Σc
4465 1/2-, 3/2-

D+Λc*(1/2-)
4465 1/2+

D+Λc*(3/2-)
4495 3/2+

① 3/2-, 5/2+

LHCb, Phys. Rev. Lett. 115, 072001 (2015) 
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4500

4400

4300

4200

4100

4000

3090

J/ψ+N
4035 1/2-, 3/2-

D+Λc
4156 1/2-

D*+Λc
4296 1/2-, 3/2-

D+Σc
4325 1/2-

D+Σc*
4390 1/2-, 3/2-

D*+Σc
4465 1/2-, 3/2-

D*+Σc*
4530 1/2-, 3/2-, 5/2-

ηc+N
3921 1/2-

hc+N
4463 1/2+

χc0+N
4353 1/2+

χc1+N
4448 1/2+, 3/2+

χc2+N
4494 3/2+, 5/2+

J/ψ+Δ
4329 1/2-, 3/2-, 5/2-

ηc+Δ
4216  3/2-

Thresholds of hadron states above 4 GeV

Pc(4380)

3/2+ (?)

Pc(4450)

5/2- (?)

MeV

Spin-parity JP ?

Not excluded

D+Λc*(1/2-)
4465 1/2+

D+Λc*(3/2-)
4495 3/2+

① 3/2-, 5/2+

② 3/2+,      5/2-

LHCb, Phys. Rev. Lett. 115, 072001 (2015) 
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4500

4400

4300

4200

4100

4000

3090

J/ψ+N
4035 1/2-, 3/2-

D+Λc
4156 1/2-

D*+Λc
4296 1/2-, 3/2-

D+Σc
4325 1/2-

D+Σc*
4390 1/2-, 3/2-

D*+Σc
4465 1/2-, 3/2-

D*+Σc*
4530 1/2-, 3/2-, 5/2-

ηc+N
3921 1/2-

hc+N
4463 1/2+

χc0+N
4353 1/2+

χc1+N
4448 1/2+, 3/2+

χc2+N
4494 3/2+, 5/2+

J/ψ+Δ
4329 1/2-, 3/2-, 5/2-

ηc+Δ
4216  3/2-

Thresholds of hadron states above 4 GeV

Pc(4380)

5/2+ (?)

Pc(4457)

3/2- (?)

MeV

Spin-parity JP ?

Not excluded

D+Λc*(1/2-)
4465 1/2+

D+Λc*(3/2-)
4495 3/2+

① 3/2-, 5/2+

② 3/2+,      5/2-

③ 5/2+,      3/2-

LHCb, Phys. Rev. Lett. 115, 072001 (2015) 
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Pc should contain at least 

ccuud
Hidden charm

So, what is the structure?
122



4. Other things?

1. Pentaquark
Quark spin/orbital excitations

Inter-quark correlations (diquarks)

2. Hadronic molecule
Inter-hadron correlations

3. Cusp effect
Kinematic anomaly

Lattice QCD, AdS/QCD, … 123



1. Pentaquark
Quark spin/orbital excitations

Inter-quark correlations (diquarks)
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Motivation

1. What is cc-nucleon interaction?
Color van der Waals force, Scale anomaly

Kaidalov, Volkovitsky (1992)

Luke, Manohar, Savage (1992)

What is the QCD mechanism 

to prevent the too-deeply 

bound state?

Skyrme model (1992)

2. Flavor extension: N(1535)~ηN ⇒ Ncc(？)~ηcN
Gobbi, Riska, Nucl. Phys. A568, 779 (1994)

Pc(4380) Γ=205 MeV, Pc(4450) Γ=39 MeV

ηc

Skyrmion (nucleon)

bound-state approach

125

Ncc mass estimated to be 2800 MeV (too light?)
Binding energy ~ 1300 MeV (!)
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Skyrme model (1992)

Pc(4380) Γ=205 MeV, Pc(4450) Γ=39 MeV

ηc

Skyrmion (nucleon)

bound-state approach
J/ψ, ηc-nucleon potential from lattice QCD

Sugiura, Ikeda, Ishii, arXix:1905.02336 [hep-lat]

Attractive!

But no bound state

Cf. Two-pion exchange in φN, HAL QCD, PRD106, 074507 (2022)
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Q. Why is the mass difference between Pc(4380) and Pc(4450) small (~70 MeV)?

Pc(4380) Γ=205 MeV, Pc(4450) Γ=39 MeV
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2

for the orbital excitation in X , Y, Z mesons are discussed
in [11] and the associated energy difference is estimated
to be ∆M (L = 0 → 1) ∼ 280 MeV.

However, the mass difference between light-light di-
quarks with spin s = 1, 0 [12], estimated from charm
and beauty baryon spectra, is of order 200 MeV, e.g.
Σc(2455) − Λc(2286) ≃ 170 MeV, Σb(5811) − Λb(5620) ≃
190 MeV.

I f we assume the perfectly possible compositions

P(3/2− ) = { c̄[cq]s= 1[q′q′′]s= 1 , L = 0}

P(5/2+ ) = { c̄[cq]s= 1[q′q′′]s= 0 , L = 1} (5)

the orbital gap is reduced to about 100 MeV, which
brings it back to the range of spin-spin and spin-orbit
corrections indicated by (4).

F lavor SU (3) structu re of p entaquark s

Pentaquarks realizing the valence quark structure (3)
are of two types

Pu = ϵαβγ c̄α [cu]β , s= 0, 1 [ud]γ , s= 0, 1 (6)

Pd = ϵαβγ c̄α [cd]β , s= 0, 1 [uu]γ , s= 1 (7)

where greek indices are for color, diquarks are in the
color antisymmetric, 3̄, configuration and overall anti-
symmetry requires flavor symmetric light-light diquark
with s = 1.

Extending to flavor SU(3), we have two distinct series
of pentaquarks according the light-light diquark symme-
try

PA = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 0 , L } =

= 3 ⊗ 3̄ = 1 ⊕ 8 (8)

PS = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 1 , L } =

= 3 ⊗ 6 = 8 ⊕ 10 (9)

For S-waves, the first and the second series give the
angular momenta

PA (L = 0) : J = 1/2 (2), 3/2 (1) (10)

PS (L = 0) : J = 1/2 (3), 3/2 (3), 5/2 (1) (11)

(in parenthesis the multiplicity of each spin value). In
consideration of (5), we propose to assign the 3/2− and
the 5/2+ states to the symmetric and antisymmetric se-
rieses, respectively.

To study the flavor properties of pentaquark produc-
tion and decay, we recall that

Λb(bud) ∼ 3̄ (12)

with respect to flavor SU(3) and is isosinglet I = 0. The
weak non-leptonic Hamiltonian for b decay is2

H (3 )
w (∆ I = 0, ∆S = −1) (13)

2 W e denote strangeness by S, not to be confused with the diquark
spin s.

Therefore, denoting by M a nonet light meson, the weak
transition amplitude

⟨P, M |H w |Λb⟩ (14)

requiresP+ M to be in the8⊕ 1 representation. Recalling
the well known SU(3) formulae

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27

8 ⊗ 10 = 8 ⊕ 10 ⊕ 27 ⊕ 35 (15)

wesee that the decay (14) can be realized with P in either
octet or decuplet. The first case is exemplified in Eqs.
(1) and (2). However, decays such as

Λb → πPS= − 1
10 → π(J/ΨΣ(1385))

Λb → K + PS= − 2
10 → K + (J/ΨΞ− (1530)) (16)

might also occur when the [ud] diquark shell in the initial
state gets broken in the decay.

The Ξ0
b(bus), Ξ− (bds) and Ωb(bss) particles undergo

visible weak decays. Example of weak decays from bot-
tom strange baryons involving pentaquarks in the 10 and
respecting ∆ I = 0 and ∆S = −1 are

Ξb(5794) → K (J/ΨΣ(1385)) (17)

in various charge combinations, which would correspond
to the formation of the pentaquarks

P10 (c̄[cq]s= 0, 1[q′s]s= 0,1) (18)

with q, q′= u, d. The [ss] pair in Ωb is in pure 6 SU(3)
representation (with spin one) and we might expect its
decay to produce decuplet pentaquarks in association
with kaons, with spectacular experimental signatures.
Examples of pentaquark production in Ωb decays are

Ω−
b (6049) → φ(J/ΨΩ− (1672)) (19)

Ω−
b (6049) → K (J/ΨΞ(1387)) (20)

which would correspond respectively to the formation of
the following pentaquarks

P−
10 (c̄[cs]s= 0, 1[ss]s= 1) (21)

P10 (c̄[cq]s= 0, 1[ss]s= 1) (22)

q = u, d. These transitions are obtained assuming that
the initial [ss] diquark in Ω−

b is left unbroken by the de-
cay process. More transitions can be found relaxing this
condition.

Conclusions

The new pentaquarks, with the parity/mass pattern
observed by the LHCb collaboration, are an evident con-
firmation that diquarks work as an organizing princi-
ple for a new class of hadrons we are observing since

2

for the orbital excitation in X , Y, Z mesons are discussed
in [11] and the associated energy difference is estimated
to be ∆M (L = 0 → 1) ∼ 280 MeV.

However, the mass difference between light-light di-
quarks with spin s = 1, 0 [12], estimated from charm
and beauty baryon spectra, is of order 200 MeV, e.g.
Σc(2455) − Λc(2286) ≃ 170 MeV, Σb(5811) − Λb(5620) ≃
190 MeV.

I f we assume the perfectly possible compositions

P(3/2− ) = { c̄[cq]s= 1[q′q′′]s= 1 , L = 0}

P(5/2+ ) = { c̄[cq]s= 1[q′q′′]s= 0 , L = 1} (5)

the orbital gap is reduced to about 100 MeV, which
brings it back to the range of spin-spin and spin-orbit
corrections indicated by (4).

F lavor SU (3) structure of p entaquarks

Pentaquarks realizing the valence quark structure (3)
are of two types

Pu = ϵαβγ c̄α [cu]β , s= 0, 1 [ud]γ , s= 0,1 (6)

Pd = ϵαβγ c̄α [cd]β , s= 0,1 [uu]γ , s= 1 (7)

where greek indices are for color, diquarks are in the
color antisymmetric, 3̄, configuration and overall anti-
symmetry requires flavor symmetric light-light diquark
with s = 1.

Extending to flavor SU(3), we have two distinct series
of pentaquarks according the light-light diquark symme-
try

PA = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 0 , L } =

= 3 ⊗ 3̄ = 1 ⊕ 8 (8)

PS = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 1 , L } =

= 3 ⊗ 6 = 8 ⊕ 10 (9)

For S-waves, the first and the second series give the
angular momenta

PA (L = 0) : J = 1/2 (2), 3/2 (1) (10)

PS (L = 0) : J = 1/2 (3), 3/2 (3), 5/2 (1) (11)

(in parenthesis the multiplicity of each spin value). In
consideration of (5), we propose to assign the 3/2− and
the 5/2+ states to the symmetric and antisymmetric se-
rieses, respectively.

To study the flavor properties of pentaquark produc-
tion and decay, we recall that

Λb(bud) ∼ 3̄ (12)

with respect to flavor SU(3) and is isosinglet I = 0. The
weak non-leptonic Hamiltonian for b decay is2

H (3 )
w (∆ I = 0, ∆S = −1) (13)

2 W e denote strangeness by S, not to be confused with the diquark
spin s.

Therefore, denoting by M a nonet light meson, the weak
transition amplitude

⟨P, M |H w |Λb⟩ (14)

requiresP+ M to be in the8⊕ 1 representation. Recalling
the well known SU(3) formulae

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27

8 ⊗ 10 = 8 ⊕ 10 ⊕ 27 ⊕ 35 (15)

wesee that the decay (14) can be realized with P in either
octet or decuplet. The first case is exemplified in Eqs.
(1) and (2). However, decays such as

Λb → πPS= − 1
10 →π(J/ΨΣ(1385))

Λb → K + PS= − 2
10 → K + (J/ΨΞ− (1530)) (16)

might also occur when the [ud] diquark shell in the initial
state gets broken in the decay.

The Ξ0
b(bus), Ξ− (bds) and Ωb(bss) particles undergo

visible weak decays. Example of weak decays from bot-
tom strange baryons involving pentaquarks in the 10 and
respecting ∆ I = 0 and ∆S = −1 are

Ξb(5794) → K (J/ΨΣ(1385)) (17)

in various charge combinations, which would correspond
to the formation of the pentaquarks

P10 (c̄[cq]s= 0, 1[q′s]s= 0,1) (18)

with q, q′= u, d. The [ss] pair in Ωb is in pure 6 SU(3)
representation (with spin one) and we might expect its
decay to produce decuplet pentaquarks in association
with kaons, with spectacular experimental signatures.
Examples of pentaquark production in Ωb decays are

Ω−
b (6049) → φ(J/ΨΩ− (1672)) (19)

Ω−
b (6049) → K (J/ΨΞ(1387)) (20)

which would correspond respectively to the formation of
the following pentaquarks

P−
10 (c̄[cs]s= 0,1[ss]s= 1) (21)

P10 (c̄[cq]s= 0,1[ss]s= 1 ) (22)

q = u, d. These transitions are obtained assuming that
the initial [ss] diquark in Ω−

b is left unbroken by the de-
cay process. More transitions can be found relaxing this
condition.

Conclusions

The new pentaquarks, with the parity/mass pattern
observed by the LHCb collaboration, are an evident con-
firmation that diquarks work as an organizing princi-
ple for a new class of hadrons we are observing since

S=1

S=1 L=0

S=0

S=1 L=1

c c
c c

Pc(4380) Pc(4450) 

Opposite parity

qq diquark

cq diquark

Opposite parity → Angular-momentum excitation
~ 500 MeV mass difference

N(1535) 1/2-N(940) 1/2+

L=0

L=1

L=2

~500 MeV

~500 MeV

+ parity - parity
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M(5/2+)-M(3/2-) = ΔMspin + ΔManglular momentum

Q. Why is the mass difference between Pc(4380) and Pc(4450) small (~70 MeV)?

Pc(4380) Γ=205 MeV, Pc(4450) Γ=39 MeV
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2

for the orbital excitation in X , Y, Z mesons are discussed
in [11] and the associated energy difference is estimated
to be ∆M (L = 0 → 1) ∼ 280 MeV.

However, the mass difference between light-light di-
quarks with spin s = 1, 0 [12], estimated from charm
and beauty baryon spectra, is of order 200 MeV, e.g.
Σc(2455) − Λc(2286) ≃ 170 MeV, Σb(5811) − Λb(5620) ≃
190 MeV.

I f we assume the perfectly possible compositions

P(3/2− ) = { c̄[cq]s= 1[q′q′′]s= 1 , L = 0}

P(5/2+ ) = { c̄[cq]s= 1[q′q′′]s= 0 , L = 1} (5)

the orbital gap is reduced to about 100 MeV, which
brings it back to the range of spin-spin and spin-orbit
corrections indicated by (4).

F lavor SU (3) structu re of p entaquark s

Pentaquarks realizing the valence quark structure (3)
are of two types

Pu = ϵαβγ c̄α [cu]β , s= 0, 1 [ud]γ , s= 0, 1 (6)

Pd = ϵαβγ c̄α [cd]β , s= 0, 1 [uu]γ , s= 1 (7)

where greek indices are for color, diquarks are in the
color antisymmetric, 3̄, configuration and overall anti-
symmetry requires flavor symmetric light-light diquark
with s = 1.

Extending to flavor SU(3), we have two distinct series
of pentaquarks according the light-light diquark symme-
try

PA = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 0 , L } =

= 3 ⊗ 3̄ = 1 ⊕ 8 (8)

PS = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 1 , L } =

= 3 ⊗ 6 = 8 ⊕ 10 (9)

For S-waves, the first and the second series give the
angular momenta

PA (L = 0) : J = 1/2 (2), 3/2 (1) (10)

PS (L = 0) : J = 1/2 (3), 3/2 (3), 5/2 (1) (11)

(in parenthesis the multiplicity of each spin value). In
consideration of (5), we propose to assign the 3/2− and
the 5/2+ states to the symmetric and antisymmetric se-
rieses, respectively.

To study the flavor properties of pentaquark produc-
tion and decay, we recall that

Λb(bud) ∼ 3̄ (12)

with respect to flavor SU(3) and is isosinglet I = 0. The
weak non-leptonic Hamiltonian for b decay is2

H (3 )
w (∆ I = 0, ∆S = −1) (13)

2 W e denote strangeness by S, not to be confused with the diquark
spin s.

Therefore, denoting by M a nonet light meson, the weak
transition amplitude

⟨P, M |H w |Λb⟩ (14)

requiresP+ M to be in the8⊕ 1 representation. Recalling
the well known SU(3) formulae

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27

8 ⊗ 10 = 8 ⊕ 10 ⊕ 27 ⊕ 35 (15)

wesee that the decay (14) can be realized with P in either
octet or decuplet. The first case is exemplified in Eqs.
(1) and (2). However, decays such as

Λb → πPS= − 1
10 → π(J/ΨΣ(1385))

Λb → K + PS= − 2
10 → K + (J/ΨΞ− (1530)) (16)

might also occur when the [ud] diquark shell in the initial
state gets broken in the decay.

The Ξ0
b(bus), Ξ− (bds) and Ωb(bss) particles undergo

visible weak decays. Example of weak decays from bot-
tom strange baryons involving pentaquarks in the 10 and
respecting ∆ I = 0 and ∆S = −1 are

Ξb(5794) → K (J/ΨΣ(1385)) (17)

in various charge combinations, which would correspond
to the formation of the pentaquarks

P10 (c̄[cq]s= 0, 1[q′s]s= 0,1) (18)

with q, q′= u, d. The [ss] pair in Ωb is in pure 6 SU(3)
representation (with spin one) and we might expect its
decay to produce decuplet pentaquarks in association
with kaons, with spectacular experimental signatures.
Examples of pentaquark production in Ωb decays are

Ω−
b (6049) → φ(J/ΨΩ− (1672)) (19)

Ω−
b (6049) → K (J/ΨΞ(1387)) (20)

which would correspond respectively to the formation of
the following pentaquarks

P−
10 (c̄[cs]s= 0, 1[ss]s= 1) (21)

P10 (c̄[cq]s= 0, 1[ss]s= 1) (22)

q = u, d. These transitions are obtained assuming that
the initial [ss] diquark in Ω−

b is left unbroken by the de-
cay process. More transitions can be found relaxing this
condition.

Conclusions

The new pentaquarks, with the parity/mass pattern
observed by the LHCb collaboration, are an evident con-
firmation that diquarks work as an organizing princi-
ple for a new class of hadrons we are observing since

2

for the orbital excitation in X , Y, Z mesons are discussed
in [11] and the associated energy difference is estimated
to be ∆M (L = 0 → 1) ∼ 280 MeV.

However, the mass difference between light-light di-
quarks with spin s = 1, 0 [12], estimated from charm
and beauty baryon spectra, is of order 200 MeV, e.g.
Σc(2455) − Λc(2286) ≃ 170 MeV, Σb(5811) − Λb(5620) ≃
190 MeV.

I f we assume the perfectly possible compositions

P(3/2− ) = { c̄[cq]s= 1[q′q′′]s= 1 , L = 0}

P(5/2+ ) = { c̄[cq]s= 1[q′q′′]s= 0 , L = 1} (5)

the orbital gap is reduced to about 100 MeV, which
brings it back to the range of spin-spin and spin-orbit
corrections indicated by (4).

F lavor SU (3) structure of p entaquarks

Pentaquarks realizing the valence quark structure (3)
are of two types

Pu = ϵαβγ c̄α [cu]β , s= 0, 1 [ud]γ , s= 0,1 (6)

Pd = ϵαβγ c̄α [cd]β , s= 0,1 [uu]γ , s= 1 (7)

where greek indices are for color, diquarks are in the
color antisymmetric, 3̄, configuration and overall anti-
symmetry requires flavor symmetric light-light diquark
with s = 1.

Extending to flavor SU(3), we have two distinct series
of pentaquarks according the light-light diquark symme-
try

PA = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 0 , L } =

= 3 ⊗ 3̄ = 1 ⊕ 8 (8)

PS = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 1 , L } =

= 3 ⊗ 6 = 8 ⊕ 10 (9)

For S-waves, the first and the second series give the
angular momenta

PA (L = 0) : J = 1/2 (2), 3/2 (1) (10)

PS (L = 0) : J = 1/2 (3), 3/2 (3), 5/2 (1) (11)

(in parenthesis the multiplicity of each spin value). In
consideration of (5), we propose to assign the 3/2− and
the 5/2+ states to the symmetric and antisymmetric se-
rieses, respectively.

To study the flavor properties of pentaquark produc-
tion and decay, we recall that

Λb(bud) ∼ 3̄ (12)

with respect to flavor SU(3) and is isosinglet I = 0. The
weak non-leptonic Hamiltonian for b decay is2

H (3 )
w (∆ I = 0, ∆S = −1) (13)

2 W e denote strangeness by S, not to be confused with the diquark
spin s.

Therefore, denoting by M a nonet light meson, the weak
transition amplitude

⟨P, M |H w |Λb⟩ (14)

requiresP+ M to be in the8⊕ 1 representation. Recalling
the well known SU(3) formulae

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27

8 ⊗ 10 = 8 ⊕ 10 ⊕ 27 ⊕ 35 (15)

wesee that the decay (14) can be realized with P in either
octet or decuplet. The first case is exemplified in Eqs.
(1) and (2). However, decays such as

Λb → πPS= − 1
10 →π(J/ΨΣ(1385))

Λb → K + PS= − 2
10 → K + (J/ΨΞ− (1530)) (16)

might also occur when the [ud] diquark shell in the initial
state gets broken in the decay.

The Ξ0
b(bus), Ξ− (bds) and Ωb(bss) particles undergo

visible weak decays. Example of weak decays from bot-
tom strange baryons involving pentaquarks in the 10 and
respecting ∆ I = 0 and ∆S = −1 are

Ξb(5794) → K (J/ΨΣ(1385)) (17)

in various charge combinations, which would correspond
to the formation of the pentaquarks

P10 (c̄[cq]s= 0, 1[q′s]s= 0,1) (18)

with q, q′= u, d. The [ss] pair in Ωb is in pure 6 SU(3)
representation (with spin one) and we might expect its
decay to produce decuplet pentaquarks in association
with kaons, with spectacular experimental signatures.
Examples of pentaquark production in Ωb decays are

Ω−
b (6049) → φ(J/ΨΩ− (1672)) (19)

Ω−
b (6049) → K (J/ΨΞ(1387)) (20)

which would correspond respectively to the formation of
the following pentaquarks

P−
10 (c̄[cs]s= 0,1[ss]s= 1) (21)

P10 (c̄[cq]s= 0,1[ss]s= 1 ) (22)

q = u, d. These transitions are obtained assuming that
the initial [ss] diquark in Ω−

b is left unbroken by the de-
cay process. More transitions can be found relaxing this
condition.

Conclusions

The new pentaquarks, with the parity/mass pattern
observed by the LHCb collaboration, are an evident con-
firmation that diquarks work as an organizing princi-
ple for a new class of hadrons we are observing since
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for the orbital excitation in X , Y, Z mesons are discussed
in [11] and the associated energy difference is estimated
to be ∆M (L = 0 → 1) ∼ 280 MeV.

However, the mass difference between light-light di-
quarks with spin s = 1, 0 [12], estimated from charm
and beauty baryon spectra, is of order 200 MeV, e.g.
Σc(2455) − Λc(2286) ≃ 170 MeV, Σb(5811) − Λb(5620) ≃
190 MeV.

I f we assume the perfectly possible compositions

P(3/2− ) = { c̄[cq]s= 1[q′q′′]s= 1 , L = 0}

P(5/2+ ) = { c̄[cq]s= 1[q′q′′]s= 0 , L = 1} (5)

the orbital gap is reduced to about 100 MeV, which
brings it back to the range of spin-spin and spin-orbit
corrections indicated by (4).

F lavor SU (3) structu re of p entaquark s

Pentaquarks realizing the valence quark structure (3)
are of two types

Pu = ϵαβγ c̄α [cu]β , s= 0, 1 [ud]γ , s= 0, 1 (6)

Pd = ϵαβγ c̄α [cd]β , s= 0, 1 [uu]γ , s= 1 (7)

where greek indices are for color, diquarks are in the
color antisymmetric, 3̄, configuration and overall anti-
symmetry requires flavor symmetric light-light diquark
with s = 1.

Extending to flavor SU(3), we have two distinct series
of pentaquarks according the light-light diquark symme-
try

PA = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 0 , L } =

= 3 ⊗ 3̄ = 1 ⊕ 8 (8)

PS = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 1 , L } =

= 3 ⊗ 6 = 8 ⊕ 10 (9)

For S-waves, the first and the second series give the
angular momenta

PA (L = 0) : J = 1/2 (2), 3/2 (1) (10)

PS (L = 0) : J = 1/2 (3), 3/2 (3), 5/2 (1) (11)

(in parenthesis the multiplicity of each spin value). In
consideration of (5), we propose to assign the 3/2− and
the 5/2+ states to the symmetric and antisymmetric se-
rieses, respectively.

To study the flavor properties of pentaquark produc-
tion and decay, we recall that

Λb(bud) ∼ 3̄ (12)

with respect to flavor SU(3) and is isosinglet I = 0. The
weak non-leptonic Hamiltonian for b decay is2

H (3 )
w (∆ I = 0, ∆S = −1) (13)

2 W e denote strangeness by S, not to be confused with the diquark
spin s.

Therefore, denoting by M a nonet light meson, the weak
transition amplitude

⟨P, M |H w |Λb⟩ (14)

requiresP+ M to be in the8⊕ 1 representation. Recalling
the well known SU(3) formulae

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27

8 ⊗ 10 = 8 ⊕ 10 ⊕ 27 ⊕ 35 (15)

wesee that the decay (14) can be realized with P in either
octet or decuplet. The first case is exemplified in Eqs.
(1) and (2). However, decays such as

Λb → πPS= − 1
10 → π(J/ΨΣ(1385))

Λb → K + PS= − 2
10 → K + (J/ΨΞ− (1530)) (16)

might also occur when the [ud] diquark shell in the initial
state gets broken in the decay.

The Ξ0
b(bus), Ξ− (bds) and Ωb(bss) particles undergo

visible weak decays. Example of weak decays from bot-
tom strange baryons involving pentaquarks in the 10 and
respecting ∆ I = 0 and ∆S = −1 are

Ξb(5794) → K (J/ΨΣ(1385)) (17)

in various charge combinations, which would correspond
to the formation of the pentaquarks

P10 (c̄[cq]s= 0, 1[q′s]s= 0,1) (18)

with q, q′= u, d. The [ss] pair in Ωb is in pure 6 SU(3)
representation (with spin one) and we might expect its
decay to produce decuplet pentaquarks in association
with kaons, with spectacular experimental signatures.
Examples of pentaquark production in Ωb decays are

Ω−
b (6049) → φ(J/ΨΩ− (1672)) (19)

Ω−
b (6049) → K (J/ΨΞ(1387)) (20)

which would correspond respectively to the formation of
the following pentaquarks

P−
10 (c̄[cs]s= 0, 1[ss]s= 1) (21)

P10 (c̄[cq]s= 0, 1[ss]s= 1) (22)

q = u, d. These transitions are obtained assuming that
the initial [ss] diquark in Ω−

b is left unbroken by the de-
cay process. More transitions can be found relaxing this
condition.

Conclusions

The new pentaquarks, with the parity/mass pattern
observed by the LHCb collaboration, are an evident con-
firmation that diquarks work as an organizing princi-
ple for a new class of hadrons we are observing since
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Extending to flavor SU(3), we have two distinct series
of pentaquarks according the light-light diquark symme-
try

PA = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 0 , L } =

= 3 ⊗ 3̄ = 1 ⊕ 8 (8)

PS = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 1 , L } =

= 3 ⊗ 6 = 8 ⊕ 10 (9)

For S-waves, the first and the second series give the
angular momenta

PA (L = 0) : J = 1/2 (2), 3/2 (1) (10)

PS (L = 0) : J = 1/2 (3), 3/2 (3), 5/2 (1) (11)

(in parenthesis the multiplicity of each spin value). In
consideration of (5), we propose to assign the 3/2− and
the 5/2+ states to the symmetric and antisymmetric se-
rieses, respectively.

To study the flavor properties of pentaquark produc-
tion and decay, we recall that

Λb(bud) ∼ 3̄ (12)

with respect to flavor SU(3) and is isosinglet I = 0. The
weak non-leptonic Hamiltonian for b decay is2

H (3 )
w (∆ I = 0, ∆S = −1) (13)
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tom strange baryons involving pentaquarks in the 10 and
respecting ∆ I = 0 and ∆S = −1 are
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in various charge combinations, which would correspond
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P10 (c̄[cq]s= 0,1[q
′s]s= 0,1) (18)

with q, q′= u, d. The [ss] pair in Ωb is in pure 6 SU(3)
representation (with spin one) and we might expect its
decay to produce decuplet pentaquarks in association
with kaons, with spectacular experimental signatures.
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Ω−
b (6049) → φ(J/ΨΩ− (1672)) (19)
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which would correspond respectively to the formation of
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observed by the LHCb collaboration, are an evident con-
firmation that diquarks work as an organizing princi-
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Pentaquark baryons are a natural expectation of an extended picture of hadrons where quarks
and diquarks are the fundamental units. The parity/mass pattern observed, when compared to that
of exotic mesons, appears as the footprint of a compact five-quark structure. W hat has been learned
from the X , Y, Z phenomenology informs about the newly found pentaquark structure and suggests
further experimental tests and directions to be explored.

PACS numbers: 12.40.Y x, 12.39.-x, 14.40.Lb
K eywords: M ultiquark particles

I ntroduction

The LHCb collaboration has reported observation of
two new resonances in the Λb decay [1],

Λb(bud) → P+ K − (1)

each decaying according to

P+ → J/Ψ+ p (2)

Thus the new particles carry a unit of baryonic number
and feature the valence quark composition

P+ = c̄cuud (3)

whence the name pentaquarks.
The best fit quantum numbers and masses are 1

JP = 3/2− , M ≃ 3380 GeV, fract. ≃ 8.4 %

JP = 5/2+ , M ≃ 4450 GeV, fract. ≃ 4.1 % (4)

In this note, we comment on the two pentaquarks
as the logical extension of the picture already proposed
in [2], and for the beauty sector in [3], for the exotic
mesons, X , Y, Z , whereby the latter particles are de-
scribed using diquarks as colored subunits, bound by
QCD color forces. See also the discussions in [4].

Light scalar mesonsas four quark stateshavebeen con-
sidered in [5] and further studied in [6, 7]. Heavy-light
diquarksasbuilding blocksof hidden charm or beauty ex-
otic mesons have been introduced in [2, 3]. Pentaquarks
from light diquarks are described in [8, 9] see also [10].

In the particular case of the newly discovered pen-
taquarks, we are led to identify the basic (color 3̄) units
as: the charm antiquark c̄, one heavy-light diquark, [cq],
and one light-light diquark, [q′q′′] (q, q′, q′′denote light
quarks, which we restric at first to be the u, d quarks,
extending later to the flavor SU(3) triplet, u, d, s).

1 W e refer to the original article [1] for experimental errors and
more details.

Needless to say, the picture of colored sub-units opens
thedoor to a rich spectroscopy of states, including orbital
excitations in addition to S-wave states, not dissimilar
from the baryon spectrum, with the 56 positive parity
baryons followed by the 70, L = 1 multiplet of negative
parity baryons.

A precise description of pentaquark spectroscopy has
to wait for more particles to be identified. However, we
shall see that even the two states just observed carry
enough information to corroborate the diquark role in
the new baryons and mesons and lead to identify some
crucial experimental signature that could make decisive
progress in this matter.

Pentaquark Par ity

Light, S-wavemesonshavenegativeparity, being made
by a quark-antiquark pair whose components have oppo-
siteparity. Negativeparity are followed by positiveparity
states (A1,2 , χJ states, etc.) due to the excitation of one
unit of orbital angular momentum. The negative parity
of the lighter state in (4) reflects just the presence of one
valence antiquark in (3) and the positive parity of the
next state is naturally interpreted as the opening of the
orbital, L = 1, excitation. Parity ordering in thebaryons,
that we have just recalled, and in X , Y, Z mesons, is just
the opposite, the X (3872) with JP C = 1+ + , being lighter
than Y (4260), with JP C = 1−− . This feature, of course,
reflects the fact that there are no valence antiquarks in
the familiar baryonsand two quark-antiquark pairs in the
lowest lying X , Z mesons, as required by the tetraquark
picture.

T he m ass d i fference

At first sight, the near 70 MeV difference between the
masses in (4) does not go well with the energy associated
to orbital excitation. One orbital excitation in mesons
and baryons carries an energy difference which is typi-
cally of order 300 MeV, as exemplified by the mass dif-
ference in Λ(1405) − Λ(1116) ∼ 290 MeV. Mass formulae

c(qq)S=1 c(qq)S=0 (uds)L=1 (uds)L=0

Opposite parity

qq diquark

cq diquark



Maiani, Polosa, Riquer, Phys. Lett. B749 (2015) 289Diquark model

M(5/2+)-M(3/2-) = ΔMspin + ΔManglular momentum

= (-200 MeV) + 300 MeV

= 100 MeV (~70 MeV)

2

for the orbital excitation in X , Y, Z mesons are discussed
in [11] and the associated energy difference is estimated
to be ∆M (L = 0 → 1) ∼ 280 MeV.

However, the mass difference between light-light di-
quarks with spin s = 1, 0 [12], estimated from charm
and beauty baryon spectra, is of order 200 MeV, e.g.
Σc(2455)− Λc(2286) ≃ 170 MeV, Σb(5811) − Λb(5620) ≃
190 MeV.

I f we assume the perfectly possible compositions

P(3/2− ) = { c̄[cq]s= 1[q
′q′′]s= 1 , L = 0}

P(5/2+ ) = { c̄[cq]s= 1[q
′q′′]s= 0 , L = 1} (5)

the orbital gap is reduced to about 100 MeV, which
brings it back to the range of spin-spin and spin-orbit
corrections indicated by (4).

F lavor SU (3) structure of p entaquark s

Pentaquarks realizing the valence quark structure (3)
are of two types

Pu = ϵαβγ c̄α [cu]β , s= 0,1 [ud]γ , s= 0,1 (6)

Pd = ϵαβγ c̄α [cd]β , s= 0,1 [uu]γ , s= 1 (7)

where greek indices are for color, diquarks are in the
color antisymmetric, 3̄, configuration and overall anti-
symmetry requires flavor symmetric light-light diquark
with s = 1.

Extending to flavor SU(3), we have two distinct series
of pentaquarks according the light-light diquark symme-
try

PA = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 0 , L } =

= 3 ⊗ 3̄ = 1 ⊕ 8 (8)
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= 3 ⊗ 6 = 8 ⊕ 10 (9)

For S-waves, the first and the second series give the
angular momenta

PA (L = 0) : J = 1/2 (2), 3/2 (1) (10)

PS (L = 0) : J = 1/2 (3), 3/2 (3), 5/2 (1) (11)

(in parenthesis the multiplicity of each spin value). In
consideration of (5), we propose to assign the 3/2− and
the 5/2+ states to the symmetric and antisymmetric se-
rieses, respectively.

To study the flavor properties of pentaquark produc-
tion and decay, we recall that

Λb(bud) ∼ 3̄ (12)

with respect to flavor SU(3) and is isosinglet I = 0. The
weak non-leptonic Hamiltonian for b decay is2

H (3 )
w (∆ I = 0, ∆S = −1) (13)

2 W e denote strangeness by S, not to be confused with the diquark
spin s.

Therefore, denoting by M a nonet light meson, the weak
transition amplitude

⟨P, M |H w |Λb⟩ (14)

requiresP+ M to be in the8⊕ 1 representation. Recalling
the well known SU(3) formulae

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27

8 ⊗ 10 = 8 ⊕ 10 ⊕ 27 ⊕ 35 (15)

wesee that the decay (14) can be realized with P in either
octet or decuplet. The first case is exemplified in Eqs.
(1) and (2). However, decays such as

Λb →πPS= − 1
10 →π(J/ΨΣ(1385))

Λb → K + PS= − 2
10 → K + (J/ΨΞ− (1530)) (16)

might also occur when the [ud] diquark shell in the initial
state gets broken in the decay.

The Ξ0
b(bus), Ξ− (bds) and Ωb(bss) particles undergo

visible weak decays. Example of weak decays from bot-
tom strange baryons involving pentaquarks in the 10 and
respecting ∆ I = 0 and ∆S = −1 are

Ξb(5794) → K (J/ΨΣ(1385)) (17)

in various charge combinations, which would correspond
to the formation of the pentaquarks

P10 (c̄[cq]s= 0,1[q
′s]s= 0,1) (18)

with q, q′= u, d. The [ss] pair in Ωb is in pure 6 SU(3)
representation (with spin one) and we might expect its
decay to produce decuplet pentaquarks in association
with kaons, with spectacular experimental signatures.
Examples of pentaquark production in Ωb decays are

Ω−
b (6049) → φ(J/ΨΩ− (1672)) (19)

Ω−
b (6049) → K (J/ΨΞ(1387)) (20)

which would correspond respectively to the formation of
the following pentaquarks

P−
10 (c̄[cs]s= 0,1[ss]s= 1 ) (21)

P10 (c̄[cq]s= 0,1[ss]s= 1) (22)

q = u, d. These transitions are obtained assuming that
the initial [ss] diquark in Ω−

b is left unbroken by the de-
cay process. More transitions can be found relaxing this
condition.

Conclusions

The new pentaquarks, with the parity/mass pattern
observed by the LHCb collaboration, are an evident con-
firmation that diquarks work as an organizing princi-
ple for a new class of hadrons we are observing since
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K eywords: M ultiquark particles

I ntroduction

The LHCb collaboration has reported observation of
two new resonances in the Λb decay [1],

Λb(bud) → P+ K − (1)

each decaying according to

P+ → J/Ψ+ p (2)

Thus the new particles carry a unit of baryonic number
and feature the valence quark composition

P+ = c̄cuud (3)

whence the name pentaquarks.
The best fit quantum numbers and masses are 1

JP = 3/2− , M ≃ 3380 GeV, fract. ≃ 8.4 %

JP = 5/2+ , M ≃ 4450 GeV, fract. ≃ 4.1 % (4)

In this note, we comment on the two pentaquarks
as the logical extension of the picture already proposed
in [2], and for the beauty sector in [3], for the exotic
mesons, X , Y, Z , whereby the latter particles are de-
scribed using diquarks as colored subunits, bound by
QCD color forces. See also the discussions in [4].

Light scalar mesonsas four quark stateshavebeen con-
sidered in [5] and further studied in [6, 7]. Heavy-light
diquarksasbuilding blocksof hidden charm or beauty ex-
otic mesons have been introduced in [2, 3]. Pentaquarks
from light diquarks are described in [8, 9] see also [10].

In the particular case of the newly discovered pen-
taquarks, we are led to identify the basic (color 3̄) units
as: the charm antiquark c̄, one heavy-light diquark, [cq],
and one light-light diquark, [q′q′′] (q, q′, q′′denote light
quarks, which we restric at first to be the u, d quarks,
extending later to the flavor SU(3) triplet, u, d, s).

1 W e refer to the original article [1] for experimental errors and
more details.

Needless to say, the picture of colored sub-units opens
thedoor to a rich spectroscopy of states, including orbital
excitations in addition to S-wave states, not dissimilar
from the baryon spectrum, with the 56 positive parity
baryons followed by the 70, L = 1 multiplet of negative
parity baryons.

A precise description of pentaquark spectroscopy has
to wait for more particles to be identified. However, we
shall see that even the two states just observed carry
enough information to corroborate the diquark role in
the new baryons and mesons and lead to identify some
crucial experimental signature that could make decisive
progress in this matter.

Pentaquark Par ity

Light, S-wavemesonshavenegativeparity, being made
by a quark-antiquark pair whose components have oppo-
siteparity. Negativeparity are followed by positiveparity
states (A1,2 , χJ states, etc.) due to the excitation of one
unit of orbital angular momentum. The negative parity
of the lighter state in (4) reflects just the presence of one
valence antiquark in (3) and the positive parity of the
next state is naturally interpreted as the opening of the
orbital, L = 1, excitation. Parity ordering in thebaryons,
that we have just recalled, and in X , Y, Z mesons, is just
the opposite, the X (3872) with JP C = 1+ + , being lighter
than Y (4260), with JP C = 1−− . This feature, of course,
reflects the fact that there are no valence antiquarks in
the familiar baryonsand two quark-antiquark pairs in the
lowest lying X , Z mesons, as required by the tetraquark
picture.

T he m ass d i fference

At first sight, the near 70 MeV difference between the
masses in (4) does not go well with the energy associated
to orbital excitation. One orbital excitation in mesons
and baryons carries an energy difference which is typi-
cally of order 300 MeV, as exemplified by the mass dif-
ference in Λ(1405) − Λ(1116) ∼ 290 MeV. Mass formulae

Q. Why is the mass difference between Pc(4380) and Pc(4450) small (~70 MeV)?

Pc(4380) Γ=205 MeV, Pc(4450) Γ=39 MeV
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for the orbital excitation in X , Y, Z mesons are discussed
in [11] and the associated energy difference is estimated
to be ∆M (L = 0 → 1) ∼ 280 MeV.

However, the mass difference between light-light di-
quarks with spin s = 1, 0 [12], estimated from charm
and beauty baryon spectra, is of order 200 MeV, e.g.
Σc(2455) − Λc(2286) ≃ 170 MeV, Σb(5811) − Λb(5620) ≃
190 MeV.

I f we assume the perfectly possible compositions

P(3/2− ) = { c̄[cq]s= 1[q′q′′]s= 1 , L = 0}

P(5/2+ ) = { c̄[cq]s= 1[q′q′′]s= 0 , L = 1} (5)

the orbital gap is reduced to about 100 MeV, which
brings it back to the range of spin-spin and spin-orbit
corrections indicated by (4).

F lavor SU (3) structu re of p entaquark s

Pentaquarks realizing the valence quark structure (3)
are of two types

Pu = ϵαβγ c̄α [cu]β , s= 0, 1 [ud]γ , s= 0, 1 (6)

Pd = ϵαβγ c̄α [cd]β , s= 0, 1 [uu]γ , s= 1 (7)

where greek indices are for color, diquarks are in the
color antisymmetric, 3̄, configuration and overall anti-
symmetry requires flavor symmetric light-light diquark
with s = 1.

Extending to flavor SU(3), we have two distinct series
of pentaquarks according the light-light diquark symme-
try

PA = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 0 , L } =

= 3 ⊗ 3̄ = 1 ⊕ 8 (8)

PS = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 1 , L } =

= 3 ⊗ 6 = 8 ⊕ 10 (9)

For S-waves, the first and the second series give the
angular momenta

PA (L = 0) : J = 1/2 (2), 3/2 (1) (10)

PS (L = 0) : J = 1/2 (3), 3/2 (3), 5/2 (1) (11)

(in parenthesis the multiplicity of each spin value). In
consideration of (5), we propose to assign the 3/2− and
the 5/2+ states to the symmetric and antisymmetric se-
rieses, respectively.

To study the flavor properties of pentaquark produc-
tion and decay, we recall that

Λb(bud) ∼ 3̄ (12)

with respect to flavor SU(3) and is isosinglet I = 0. The
weak non-leptonic Hamiltonian for b decay is2

H (3 )
w (∆ I = 0, ∆S = −1) (13)

2 W e denote strangeness by S, not to be confused with the diquark
spin s.

Therefore, denoting by M a nonet light meson, the weak
transition amplitude

⟨P, M |H w |Λb⟩ (14)

requiresP+ M to be in the8⊕ 1 representation. Recalling
the well known SU(3) formulae

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27

8 ⊗ 10 = 8 ⊕ 10 ⊕ 27 ⊕ 35 (15)

wesee that the decay (14) can be realized with P in either
octet or decuplet. The first case is exemplified in Eqs.
(1) and (2). However, decays such as

Λb → πPS= − 1
10 → π(J/ΨΣ(1385))

Λb → K + PS= − 2
10 → K + (J/ΨΞ− (1530)) (16)

might also occur when the [ud] diquark shell in the initial
state gets broken in the decay.

The Ξ0
b(bus), Ξ− (bds) and Ωb(bss) particles undergo

visible weak decays. Example of weak decays from bot-
tom strange baryons involving pentaquarks in the 10 and
respecting ∆ I = 0 and ∆S = −1 are

Ξb(5794) → K (J/ΨΣ(1385)) (17)

in various charge combinations, which would correspond
to the formation of the pentaquarks

P10 (c̄[cq]s= 0, 1[q′s]s= 0,1) (18)

with q, q′= u, d. The [ss] pair in Ωb is in pure 6 SU(3)
representation (with spin one) and we might expect its
decay to produce decuplet pentaquarks in association
with kaons, with spectacular experimental signatures.
Examples of pentaquark production in Ωb decays are

Ω−
b (6049) → φ(J/ΨΩ− (1672)) (19)

Ω−
b (6049) → K (J/ΨΞ(1387)) (20)

which would correspond respectively to the formation of
the following pentaquarks

P−
10 (c̄[cs]s= 0, 1[ss]s= 1) (21)

P10 (c̄[cq]s= 0, 1[ss]s= 1) (22)

q = u, d. These transitions are obtained assuming that
the initial [ss] diquark in Ω−

b is left unbroken by the de-
cay process. More transitions can be found relaxing this
condition.

Conclusions

The new pentaquarks, with the parity/mass pattern
observed by the LHCb collaboration, are an evident con-
firmation that diquarks work as an organizing princi-
ple for a new class of hadrons we are observing since
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to be ∆M (L = 0 → 1) ∼ 280 MeV.
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the orbital gap is reduced to about 100 MeV, which
brings it back to the range of spin-spin and spin-orbit
corrections indicated by (4).
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Pentaquarks realizing the valence quark structure (3)
are of two types

Pu = ϵαβγ c̄α [cu]β , s= 0, 1 [ud]γ , s= 0,1 (6)

Pd = ϵαβγ c̄α [cd]β , s= 0,1 [uu]γ , s= 1 (7)

where greek indices are for color, diquarks are in the
color antisymmetric, 3̄, configuration and overall anti-
symmetry requires flavor symmetric light-light diquark
with s = 1.

Extending to flavor SU(3), we have two distinct series
of pentaquarks according the light-light diquark symme-
try

PA = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 0 , L } =

= 3 ⊗ 3̄ = 1 ⊕ 8 (8)

PS = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 1 , L } =

= 3 ⊗ 6 = 8 ⊕ 10 (9)

For S-waves, the first and the second series give the
angular momenta

PA (L = 0) : J = 1/2 (2), 3/2 (1) (10)

PS (L = 0) : J = 1/2 (3), 3/2 (3), 5/2 (1) (11)

(in parenthesis the multiplicity of each spin value). In
consideration of (5), we propose to assign the 3/2− and
the 5/2+ states to the symmetric and antisymmetric se-
rieses, respectively.

To study the flavor properties of pentaquark produc-
tion and decay, we recall that

Λb(bud) ∼ 3̄ (12)

with respect to flavor SU(3) and is isosinglet I = 0. The
weak non-leptonic Hamiltonian for b decay is2

H (3 )
w (∆ I = 0, ∆S = −1) (13)

2 W e denote strangeness by S, not to be confused with the diquark
spin s.

Therefore, denoting by M a nonet light meson, the weak
transition amplitude

⟨P, M |H w |Λb⟩ (14)

requiresP+ M to be in the8⊕ 1 representation. Recalling
the well known SU(3) formulae

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27

8 ⊗ 10 = 8 ⊕ 10 ⊕ 27 ⊕ 35 (15)

wesee that the decay (14) can be realized with P in either
octet or decuplet. The first case is exemplified in Eqs.
(1) and (2). However, decays such as

Λb → πPS= − 1
10 →π(J/ΨΣ(1385))

Λb → K + PS= − 2
10 → K + (J/ΨΞ− (1530)) (16)

might also occur when the [ud] diquark shell in the initial
state gets broken in the decay.

The Ξ0
b(bus), Ξ− (bds) and Ωb(bss) particles undergo

visible weak decays. Example of weak decays from bot-
tom strange baryons involving pentaquarks in the 10 and
respecting ∆ I = 0 and ∆S = −1 are

Ξb(5794) → K (J/ΨΣ(1385)) (17)

in various charge combinations, which would correspond
to the formation of the pentaquarks

P10 (c̄[cq]s= 0, 1[q′s]s= 0,1) (18)

with q, q′= u, d. The [ss] pair in Ωb is in pure 6 SU(3)
representation (with spin one) and we might expect its
decay to produce decuplet pentaquarks in association
with kaons, with spectacular experimental signatures.
Examples of pentaquark production in Ωb decays are

Ω−
b (6049) → φ(J/ΨΩ− (1672)) (19)

Ω−
b (6049) → K (J/ΨΞ(1387)) (20)

which would correspond respectively to the formation of
the following pentaquarks

P−
10 (c̄[cs]s= 0,1[ss]s= 1) (21)

P10 (c̄[cq]s= 0,1[ss]s= 1 ) (22)

q = u, d. These transitions are obtained assuming that
the initial [ss] diquark in Ω−

b is left unbroken by the de-
cay process. More transitions can be found relaxing this
condition.

Conclusions

The new pentaquarks, with the parity/mass pattern
observed by the LHCb collaboration, are an evident con-
firmation that diquarks work as an organizing princi-
ple for a new class of hadrons we are observing since
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for the orbital excitation in X , Y, Z mesons are discussed
in [11] and the associated energy difference is estimated
to be ∆M (L = 0 → 1) ∼ 280 MeV.

However, the mass difference between light-light di-
quarks with spin s = 1, 0 [12], estimated from charm
and beauty baryon spectra, is of order 200 MeV, e.g.
Σc(2455) − Λc(2286) ≃ 170 MeV, Σb(5811) − Λb(5620) ≃
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P(3/2− ) = { c̄[cq]s= 1[q′q′′]s= 1 , L = 0}

P(5/2+ ) = { c̄[cq]s= 1[q′q′′]s= 0 , L = 1} (5)

the orbital gap is reduced to about 100 MeV, which
brings it back to the range of spin-spin and spin-orbit
corrections indicated by (4).

F lavor SU (3) structu re of p entaquark s

Pentaquarks realizing the valence quark structure (3)
are of two types

Pu = ϵαβγ c̄α [cu]β , s= 0, 1 [ud]γ , s= 0, 1 (6)

Pd = ϵαβγ c̄α [cd]β , s= 0, 1 [uu]γ , s= 1 (7)

where greek indices are for color, diquarks are in the
color antisymmetric, 3̄, configuration and overall anti-
symmetry requires flavor symmetric light-light diquark
with s = 1.

Extending to flavor SU(3), we have two distinct series
of pentaquarks according the light-light diquark symme-
try

PA = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 0 , L } =

= 3 ⊗ 3̄ = 1 ⊕ 8 (8)
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= 3 ⊗ 6 = 8 ⊕ 10 (9)

For S-waves, the first and the second series give the
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(in parenthesis the multiplicity of each spin value). In
consideration of (5), we propose to assign the 3/2− and
the 5/2+ states to the symmetric and antisymmetric se-
rieses, respectively.

To study the flavor properties of pentaquark produc-
tion and decay, we recall that

Λb(bud) ∼ 3̄ (12)

with respect to flavor SU(3) and is isosinglet I = 0. The
weak non-leptonic Hamiltonian for b decay is2

H (3 )
w (∆ I = 0, ∆S = −1) (13)

2 W e denote strangeness by S, not to be confused with the diquark
spin s.

Therefore, denoting by M a nonet light meson, the weak
transition amplitude

⟨P, M |H w |Λb⟩ (14)

requiresP+ M to be in the8⊕ 1 representation. Recalling
the well known SU(3) formulae

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27

8 ⊗ 10 = 8 ⊕ 10 ⊕ 27 ⊕ 35 (15)

wesee that the decay (14) can be realized with P in either
octet or decuplet. The first case is exemplified in Eqs.
(1) and (2). However, decays such as

Λb → πPS= − 1
10 → π(J/ΨΣ(1385))

Λb → K + PS= − 2
10 → K + (J/ΨΞ− (1530)) (16)

might also occur when the [ud] diquark shell in the initial
state gets broken in the decay.

The Ξ0
b(bus), Ξ− (bds) and Ωb(bss) particles undergo

visible weak decays. Example of weak decays from bot-
tom strange baryons involving pentaquarks in the 10 and
respecting ∆ I = 0 and ∆S = −1 are

Ξb(5794) → K (J/ΨΣ(1385)) (17)

in various charge combinations, which would correspond
to the formation of the pentaquarks

P10 (c̄[cq]s= 0, 1[q′s]s= 0,1) (18)

with q, q′= u, d. The [ss] pair in Ωb is in pure 6 SU(3)
representation (with spin one) and we might expect its
decay to produce decuplet pentaquarks in association
with kaons, with spectacular experimental signatures.
Examples of pentaquark production in Ωb decays are

Ω−
b (6049) → φ(J/ΨΩ− (1672)) (19)

Ω−
b (6049) → K (J/ΨΞ(1387)) (20)

which would correspond respectively to the formation of
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for the orbital excitation in X , Y, Z mesons are discussed
in [11] and the associated energy difference is estimated
to be ∆M (L = 0 → 1) ∼ 280 MeV.

However, the mass difference between light-light di-
quarks with spin s = 1, 0 [12], estimated from charm
and beauty baryon spectra, is of order 200 MeV, e.g.
Σc(2455) − Λc(2286) ≃ 170 MeV, Σb(5811) − Λb(5620) ≃
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P(5/2+ ) = { c̄[cq]s= 1[q′q′′]s= 0 , L = 1} (5)

the orbital gap is reduced to about 100 MeV, which
brings it back to the range of spin-spin and spin-orbit
corrections indicated by (4).

F lavor SU (3) structure of p entaquarks

Pentaquarks realizing the valence quark structure (3)
are of two types

Pu = ϵαβγ c̄α [cu]β , s= 0, 1 [ud]γ , s= 0,1 (6)

Pd = ϵαβγ c̄α [cd]β , s= 0,1 [uu]γ , s= 1 (7)

where greek indices are for color, diquarks are in the
color antisymmetric, 3̄, configuration and overall anti-
symmetry requires flavor symmetric light-light diquark
with s = 1.

Extending to flavor SU(3), we have two distinct series
of pentaquarks according the light-light diquark symme-
try

PA = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 0 , L } =
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(1) and (2). However, decays such as

Λb → πPS= − 1
10 →π(J/ΨΣ(1385))

Λb → K + PS= − 2
10 → K + (J/ΨΞ− (1530)) (16)

might also occur when the [ud] diquark shell in the initial
state gets broken in the decay.

The Ξ0
b(bus), Ξ− (bds) and Ωb(bss) particles undergo
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tom strange baryons involving pentaquarks in the 10 and
respecting ∆ I = 0 and ∆S = −1 are

Ξb(5794) → K (J/ΨΣ(1385)) (17)

in various charge combinations, which would correspond
to the formation of the pentaquarks

P10 (c̄[cq]s= 0, 1[q′s]s= 0,1) (18)

with q, q′= u, d. The [ss] pair in Ωb is in pure 6 SU(3)
representation (with spin one) and we might expect its
decay to produce decuplet pentaquarks in association
with kaons, with spectacular experimental signatures.
Examples of pentaquark production in Ωb decays are

Ω−
b (6049) → φ(J/ΨΩ− (1672)) (19)

Ω−
b (6049) → K (J/ΨΞ(1387)) (20)

which would correspond respectively to the formation of
the following pentaquarks

P−
10 (c̄[cs]s= 0,1[ss]s= 1) (21)

P10 (c̄[cq]s= 0,1[ss]s= 1 ) (22)

q = u, d. These transitions are obtained assuming that
the initial [ss] diquark in Ω−

b is left unbroken by the de-
cay process. More transitions can be found relaxing this
condition.

Conclusions

The new pentaquarks, with the parity/mass pattern
observed by the LHCb collaboration, are an evident con-
firmation that diquarks work as an organizing princi-
ple for a new class of hadrons we are observing since
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for the orbital excitation in X , Y, Z mesons are discussed
in [11] and the associated energy difference is estimated
to be ∆M (L = 0 → 1) ∼ 280 M eV.

However, the mass difference between light-light di-
quarks with spin s = 1, 0 [12], estimated from charm
and beauty baryon spectra, is of order 200 M eV, e.g.
Σc(2455) − Λc(2286) ≃ 170 M eV, Σb(5811) − Λb(5620) ≃
190 M eV.

I f we assume the perfectly possible compositions

P(3/2− ) = { c̄ [cq]s= 1 [q′q′′]s= 1 , L = 0}

P (5/2+ ) = { c̄ [cq]s= 1 [q′q′′]s= 0 , L = 1} (5)

the orbital gap is reduced to about 100 M eV, which
brings it back to the range of spin-spin and spin-orbit
corrections indicated by (4).

F lavor SU ( 3) stru ctu re of p en taqu ark s

Pentaquarks realizing the valence quark structure (3)
are of two types

P u = ϵαβγ c̄α [cu]β , s= 0, 1 [ud]γ , s= 0, 1 (6)

P d = ϵαβγ c̄α [cd]β , s= 0, 1 [uu]γ , s= 1 (7)

where greek indices are for color, diquarks are in the
color antisymmetric, 3̄ , configuration and overall anti-
symmetry requires flavor symmetric light-light diquark
with s = 1.

Extending to flavor SU(3), we have two distinct series
of pentaquarks according the light-light diquark symme-
try

PA = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 0 , L } =

= 3 ⊗ 3̄ = 1 ⊕ 8 (8)

PS = ϵαβγ { c̄α [cq]β , s= 0, 1 [q′q′′]γ , s= 1 , L } =

= 3 ⊗ 6 = 8 ⊕ 10 (9)

For S-waves, the fi rst and the second series give the
angular momenta

PA (L = 0) : J = 1/2 (2), 3/2 (1) (10)

PS (L = 0) : J = 1/2 (3), 3/2 (3), 5/2 (1) (11)

(in parenthesis the multiplicity of each spin value). In
consideration of (5), we propose to assign the 3/2− and
the 5/2+ states to the symmetric and antisymmetric se-
rieses, respectively.

To study the flavor properties of pentaquark produc-
tion and decay, we recall that

Λb(bud) ∼ 3̄ (12)

with respect to flavor SU(3) and is isosinglet I = 0. The
weak non-leptonic Hamiltonian for b decay is2

H ( 3 )
w (∆ I = 0, ∆ S = −1) (13)

2 W e denote strangeness by S, not to be confused with the diquark
spin s.

Therefore, denoting by M a nonet light meson, the weak
transition amplitude

⟨P, M |H w |Λb⟩ (14)

requiresP+ M to be in the 8⊕ 1 representation. Recalling
the well known SU(3) formulae

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27

8 ⊗ 10 = 8 ⊕ 10 ⊕ 27 ⊕ 35 (15)

we see that the decay (14) can be realized with P in either
octet or decuplet. The fi rst case is exemplified in Eqs.
(1) and (2). However, decays such as

Λb → πPS = − 1
10 → π(J/ΨΣ (1385))

Λb → K + PS = − 2
10 → K + (J/ΨΞ− (1530)) (16)

might also occur when the [ud] diquark shell in the initial
state gets broken in the decay.

The Ξ0
b (bus), Ξ− (bds) and Ωb(bss) particles undergo

visible weak decays. Example of weak decays from bot-
tom strange baryons involving pentaquarks in the 10 and
respecting ∆ I = 0 and ∆ S = −1 are

Ξb(5794) → K (J/ΨΣ (1385)) (17)

in various charge combinations, which would correspond
to the formation of the pentaquarks

P 10 ( c̄ [cq]s= 0, 1 [q′s]s= 0, 1 ) (18)

with q, q′= u, d. The [ss] pair in Ωb is in pure 6 SU(3)
representation (with spin one) and we might expect its
decay to produce decuplet pentaquarks in association
with kaons, with spectacular experimental signatures.
Examples of pentaquark production in Ωb decays are

Ω−
b (6049) → φ (J/ΨΩ− (1672)) (19)

Ω−
b (6049) → K (J/ΨΞ(1387)) (20)

which would correspond respectively to the formation of
the following pentaquarks

P−
10 ( c̄ [cs]s= 0, 1[ss]s= 1 ) (21)

P 10 ( c̄ [cq]s= 0, 1[ss]s= 1 ) (22)

q = u, d. These transitions are obtained assuming that
the initial [ss] diquark in Ω−

b is left unbroken by the de-
cay process. M ore transitions can be found relaxing this
condition.

C onclu sion s

The new pentaquarks, with the parity/mass pattern
observed by the LHCb collaboration, are an evident con-
fi rmation that diquarks work as an organizing princi-
ple for a new class of hadrons we are observing since

If this is true, we can make an extension from SU(2) flavor symmetry to SU(3).

Pc(4380) Γ=205 MeV, Pc(4450) Γ=39 MeV
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ground state and nucleon resonance states, are hundreds
of M eV which are usually comparable to the 3q configu-
ration excitation energy, such a high energy resonance, if
it exists, will have more than 3.3 GeV excitation energy
and thus will definitely exclude the explanation as three
light quark configuration (qqq), and only the description
that this state is dominated by hidden charm five con-
stituent quark configuration (qqqcc̄) or ΣcD̄ bound state
or ΣcD̄ -ΛcD̄ resonance state or a mixture of them will
be possible.

In Refs. [22, 23], the interaction between ΣcD̄ and ΛcD̄
has been studied within the framework of the coupled-
channel unitary approach. There, a ΣcD̄ bound state is
obtained with the energy of 4.269 GeV, which is about
52 M eV below the ΣcD̄ threshold. This state is found
not to couple to ΛcD̄ channel even its energy is about
114 M eV above the ΛcD̄ threshold. Since the unitary
approach used in Refs. [22, 23] is restricted to the con-
tact term interaction only by neglecting the momentum-
dependent terms, the study of the ΣcD̄ and ΛcD̄ state
in other approaches is imperative in order to check the
model dependence and to confi rm the possibility of the
existence of such a ΣcD̄ bound state.

In the past few years, the chiral SU(3) quark model and
its extended version have shown to be quite reasonable
and useful models to describe the medium-range non-
perturbative QCD effect in light flavor systems. Quite
successes have been achieved when these two models were
applied to the studiesof the energiesof the baryon ground
states, the binding energy of the deuteron, the nucleon-
nucleon (N N ) and kaon-nucleon (K N ) scattering phase
shifts of different partial waves, and the hyperon-nucleon
(Y N ) and anti-kaon-nucleon (K̄ N ) cross sections [24–
30]. In the chiral SU(3) quark model, the quark-quark in-
teraction contains OGE, confinement potential, and bo-
son exchanges stemming from scalar and pseudoscalar
nonets. In the extended chiral SU(3) quark model, the
boson exchanges stemming from the vector nonets are
also included, and as a consequence the OGE in largely
reduced by fi tting to the energies of the octet and decu-
plet baryon ground states. Recently, these two models
have also been applied to study the systems of N φ, N Ω̄,
ΞK̄ , Ωπ, Ωω, ωφ, and D 0D̄ ∗0 et al. [31–37].

In this work, we further extend the chiral SU(3) quark
model and its extended version to perform a dynamical
coupled-channel study of the ΣcD̄ and ΛcD̄ states in the
framework of the resonating group method (RGM ), a well
established method for studying the interactions among
composite particles [38–40]. The quark configuration of
the considered system is (qqc)-(qc̄) with q being the light-
flavor quark u or d. W e take the interaction between the
light-flavor quark pair qq from our previous works where
the parameters are fixed by a fi tting of the energies of
octet and decuplet baryon ground states, the binding en-
ergy of deuteron, the N N scattering phase shifts, and
the Y N cross sections [24, 25]. The light-heavy quark
pair qc or qc̄ and the heavy-heavy quark pair cc̄ are con-
sidered here to be interacted via OGE and confinement

potential. The only adjustable parameter is the charm
quark mass m c, while the parameters of OGE and con-
finement for qc, qc̄ and cc̄ interactions are fixed by the
masses of charmed baryons Σc, Λc and charmed mesons
D , D ∗ and the charmonium J/ψ, ηc, and by the stability
conditions of those hadrons. Our results show that the
interaction between Σc and D̄ is attractive, which con-
sequently results in a ΣcD̄ bound state with the binding
energy of about 5− 42 M eV, unlike the case of ΛcD̄ state,
which has a repulsive interaction and thus is unbound.
The channel coupling effect of ΣcD̄ and ΛcD̄ is found to
be negligible due to the fact that the gap between the
ΣcD̄ and ΛcD̄ thresholds is relatively large and the ΣcD̄
and ΛcD̄ transition interaction is weak.

The paper is organized as follows. In the next section
the framework is briefly introduced. The results for the
ΣcD̄ and ΛcD̄ states are shown in Sec. I I I , where some
discussion is presented as well. Finally, the summary is
given in Sec. IV .

I I . F O R M U L A T I O N

The chiral quark model used in the present work has
been widely described in the literature [7, 8, 27–30], and
we refer the reader to those references for details. Here
we just present the salient features of this model. The
total Hamiltonian is written as

H =
i

Ti − TG +
i , j

Vi j , (1)

where Ti is the kinetic energy operator for the i th quark,
and TG the kinetic energy operator for the center-of-mass
motion. Vi j represents the interactions between quark-
quark or quark-antiquark,

Vi j =
V O G E

i j + V con f
i j + M V M

i j , ( i j = qq)

V O G E
i j + V con f

i j , i j = qQ, qQ̄, QQ̄

(2)
where q and Q represent light quark u or d and heavy
quark c, respectively; V O G E

i j is the OGE potential,

V O G E
i j =

1

4
gi gj λc

i · λ
c
j

1

r i j
−
π

2
δ( i j )

×
1

m 2
qi

+
1

m 2
qj

+
4

3

σi · σj

m qi m qj

, (3)

and V con f
i j is the confinement potential which provides

the non-perturbative QCD effect in the long distance,

V con f
i j = − (λc

i · λ
c
j ) ac

i j r i j + ac0
i j . (4)

V M
i j represents the effective quark-quark potential in-

duced by one-boson exchanges, and it is only considered
for the light quark pairs. Generally,

V M
i j = V σa

i j + V πa

i j + V ρa

i j , (5)
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TABLE I : M odel parameters. M odel I refers to the model
where the coupling for vector nonets is not considered. M od-
els I I and I I I refer to the models where the coupling for vector
nonets is included while the ratio for tensor coupling and vec-
tor coupling f chv /gchv is taken to be 0 and 2/3, respectively.

m c gc ac
u u ac

u c ac
cc ac0

u u ac0
u c ac0

cc

(GeV) (fm− 2 ) ( fm− 2 ) ( fm− 2 ) ( fm− 1 ) ( fm− 1 ) (fm− 1 )

I 1.43 0.35 0.44 1.07 1.74 −0.38 −0.74 −0.73

1.55 0.37 0.44 1.08 1.77 −0.38 −0.85 −0.93

1.87 0.43 0.44 1.10 1.81 −0.38 −1.14 −1.44

I I 1.43 0.77 0.41 1.70 1.83 −0.53 −1.15 −0.34

1.55 0.82 0.41 1.72 1.68 −0.53 −1.27 −0.40

1.87 0.94 0.41 1.76 1.04 −0.53 −1.57 −0.47

I I I 1.43 0.57 0.37 1.68 2.19 −0.46 −1.14 −0.71

1.55 0.60 0.37 1.69 2.16 −0.46 −1.25 −0.85

1.87 0.69 0.37 1.74 1.94 −0.46 −1.55 −1.17

TABLE I I : The masses (in GeV) of Σ c , Λc , D , D ∗ , J/ψ and
ηc obtained from models I , I I and I I I , respectively, with m c

being taken as 1.55 GeV . Experimental values are taken from
PDG [48].

Σ c Λc D D ∗ J/ψ ηc

Exp. 2.452 2.286 1.869 2.007 3.097 2.980

I 2.436 2.269 1.883 1.947 3.052 3.024

I I 2.450 2.283 1.869 1.932 3.129 2.946

I I I 2.450 2.283 1.869 1.932 3.087 2.989

coordinate between the two clusters, A and B , and
β ≡(A, B , I , S, L , J) specifies the hadron species (A, B )
and quantum numbers of the baryon-meson channel. The

φ̂A and φ̂B are the internal cluster wave functions of A
and B , and χβ (RA B ) the relative wave function of the
two clusters. The symbol A is the anti-symmetrizing op-
erator defined as

A ≡1 −
i∈A

Pi 4 ≡1 − 3P34 . (15)

Substituting Ψ into the projection equation

⟨δΨ|(H − E )|Ψ⟩ = 0, (16)

we obtain the coupled integro-differential equation for the
relative function χβ as

β′

[H ββ′(R , R′) − E N ββ′(R , R′)]χβ′(R′) dR′= 0,

(17)
where the Hamiltonian kernel H and normalization ker-
nel N can, respectively, be calculated by

H ββ′(R , R′)

N ββ′(R , R′)
= [φ̂A (ξ1 , ξ2 )φ̂B (ξ3 )]βδ(R − RA B )

H

1
A [φ̂A (ξ1 , ξ2)φ̂B (ξ3 )]β′δ(R′− RA B ) .

(18)

Equation (17) is the so-called coupled-channel RGM
equation. Expanding unknown χβ (RA B ) by employing
well-defined basis wave functions, such as Gaussian func-
tions, one can solve the coupled-channel RGM equation
for a bound-state problem or a scattering one to obtain
the binding energy or scattering S matrix elements for
the two-cluster systems. The details of solving the RGM
equation can be found in Refs. [38–40].

I I I . R E SU LT S A N D D I SC U SSI O N S

As mentioned in the Introduction, the structures of
the nucleon resonances below 2 GeV are not clear so far.
Different models may give us different pictures even they
fi t the same set of data, since each model has its own
uncertainties which are usually approximated by fi tting
parameters. I t is still a challenging task for hadron physi-
cist whether the low energy baryon resonances should
be described by three constituent quark configuration
(qqq) or five constituent quark configuration (qqqqq̄) or
baryon-meson dynamically generated states or a mixture
of them. The ΣcD̄ and ΛcD̄ states are of particular in-
terest simply because if there exists a ΣcD̄ bound state
or a ΣcD̄ -ΛcD̄ dynamically generated resonance, its en-
ergy will be around 4.3 GeV and the explanation of such
a high energy state as three constituent quark configu-
ration (qqq) will be definitely excluded while only the
description that this state is dominated by hidden charm
five constituent quark configuration (qqqcc̄) or ΣcD̄ -ΛcD̄
baryon-meson state or a mixture of them will be possi-
ble. Thus the system of ΣcD̄ -ΛcD̄ will be a good place
to test whether we could have a nucleon resonance whose
configuration is dominated by at least five quarks.

Here we perform a dynamical investigation of the ΣcD̄
and ΛcD̄ states with isospin I = 1/2 and spin S = 1/2 by
solving the RGM equation (Eq. (17)) in our chiral quark
models as depicted in Sec. I I . Our purpose is to under-
stand the interaction properties of the ΣcD̄ and ΛcD̄
states and to see whether there exists a ΣcD̄ bound state
or a ΣcD̄ -ΛcD̄ dynamically generated resonance within
our chiral quark models.

Figure 1 shows the diagonal matrix elements of the
Hamiltonian for the ΣcD̄ system in the generator coor-
dinate method (GCM ) [38] calculation, which can be re-
garded as the effective Hamiltonian of two color-singlet
clusters Σc and D̄ qualitatively. In Fig. 1, H Σ c D̄ in-

cludes the kinetic energy of ΣcD̄ relative motion and
the effective potential between Σc and D̄ , and s denotes
the generator coordinate which can qualitatively describe
the distance between the two clusters Σc and D̄ . From
Fig. 1, one sees that Σc and D̄ are attractive to each
other in the medium range for all those three values of
charm quark mass m c = 1.43 GeV, 1.55 GeV and 1.87

mass: 4.279-4.316 GeV

Σc, Λc

D

Very good agreement with LHCb!

Pc(4380) Γ=205 MeV, Pc(4450) Γ=39 MeV
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Fig. 1. I t is shown the logarithm of the diagonal Speedaa (
√

s ) for all channels where
resonances form with C = 0.

exchange (25). I t provides the factor 2
√

s− M − M̄ . I f evaluated at threshold
it scales with the meson mass.

The states shown in Fig. 1 are narrow as a result of the OZI rule. The mech-
anism is analogous to the one explaining the long life time of the J/Ψ-meson.
W e should mention, however, a caveat. I t turns out that the width of the
crypto-exotic states is quite sensitive to the presence of channels involving the
η′meson. This is a natural result since the η′meson is closely related to the
UA (1) anomaly giving it large gluonic components. The latter work against
the OZI rule. The relevant interaction terms are readily identified

L
SU (3)
int = i√

6
(3 h 3̄

3̄1 − h 3̄
3̄9) [D̄ D µ + D̄ sD

µ
s ](∂µη

′) + h.c.

19

Hofmann, Lutz, Nucl. Phys. A763, 90 (2005)

W ithin the hidden local symmetry model [24] chiral symmetry is recovered
with

g9
3̄3̄ = g9

66 = −g9
33 = 2 g , g9,−

88 = g , g9,+
88 = 0 , g9

3̄6 = 0 . (9)

It is acknowledged that chiral symmetry does not constrain the coupling con-
stants in (6, 8) involving the SU(3) singlet part of the fields. The latter can,
however, be constrained by a large-N c operator analysis [38]. At leading order
in the 1/N c expansion the OZI rule [39] is predicted. As a consequence the
estimates

h1
3̄3̄ = −g , g1

3̄3̄ = g1
66 = 0 , g1

88 = g1
33 = g , (10)

follow. W e emphasize that the combination of chiral and large-N c constraints
(7, 9, 10) determine all coupling constants introduced in (6, 8).

Before constructing the t-channel exchange forces it is rewarding to dwell a bit
more on the coupling constants introduced in (1, 3). One may wonder whether
the results obtained are compatible with the approximate SU(4) symmetry of
QCD that would arise in the limit of a light charm quark mass. As an amusing
result of this exercise we will demonstrate that the KSFR relation [30,31,32]
can be derived by insisting on SU(4) symmetric coupling constants. The SU(4)
symmetric generalization of (1) is readily written down

L
SU(4)
int = i

4
g tr [(∂µ Φ[16]) , Φ[16]]−V µ

[16] ,

Φ[16]=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

π0+ 1√
3
η + 2

3
η′

√
2 π+

√
2 K +

√
2 D̄ 0

√
2 π− −π0+ 1√

3
η + 2

3
η′

√
2 K 0 −

√
2 D̄ −

√
2 K̄ −

√
2 K̄ 0 − 2√

3
η + 2

3
η′

√
2 D̄ −

s
√

2 D 0 −
√

2 D +
√

2 D +
s

√
2ηc

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

V µ
[16]=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ
µ
0 + ωµ

√
2 ρµ+

√
2 K µ

+

√
2 D̄ µ

0
√

2 ρµ− −ρµ0 + ωµ
√

2 K µ
0 −

√
2 D̄ µ

−
√

2 K̄ µ
−

√
2 K̄ µ

∗0

√
2 φµ

√
2 D̄ s,µ

−
√

2 D µ
0 −

√
2 D µ

+

√
2 D s,µ

+

√
2 J/Ψµ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (11)

W e observe that the interaction (11) is compatible with (7) and (10) if and
only if the KSFR relation

6

(m
(V )
[9] )2

2 f 2 g
= g , (12)

holds. This is a surprising result since at first sight the K SFR relation does
not seem to be connected with the physics of charm quarks. I t is instructive
to construct also the SU(4) symmetric generalization of the interaction (8).
The baryons form a 20-plet in SU(4). I ts field is represented by a tensor B i j k ,
which is antisymmetric in the first two indices. The indices i , j , k run from
one to four, where one can read off the quark content of a baryon state by the
identifications 1 ↔ u, 2 ↔ d, 3 ↔ s, 4 ↔ c. W e write:

L
SU (4)
int = 1

4
g

4

i , j ,k , l = 1

B̄
[20]
i j k γµ V

[16],k
µ , l B i j l

[20] + 2 V
[16], j
µ , l B i l k

[20] (13)

B 121
[20] = p B 122

[20] = n B 132
[20] = 1√

2
Σ0 − 1√

6
Λ

B 213
[20] = 2√

6
Λ B 231

[20] = 1√
2
Σ0 + 1√

6
Λ B 232

[20] = Σ−

B 233
[20] = Ξ− B 311

[20] = Σ+ B 313
[20] = Ξ0

B 141
[20] = −Σ+ +

c B 142
[20] = 1√

2
Σ+

c + 1√
6
Λc B 143

[20] = 1√
2
Ξ′+

c − 1√
6
Ξ+

c

B 241
[20] = 1√

2
Σ+

c − 1√
6
Λc B 242

[20] = Σ0
c B 243

[20] = 1√
2
Ξ′0

c + 1√
6
Ξ0

c

B 341
[20] = 1√

2
Ξ′+

c + 1√
6
Ξ+

c B 342
[20] = 1√

2
Ξ′0

c − 1√
6
Ξ0

c B 343
[20] = Ωc

B 124
[20] = 2√

6
Λ0

c B 234
[20] = 2√

6
Ξ0

c B 314
[20] = 2√

6
Ξ+

c

B 144
[20] = Ξ+ +

cc B 244
[20] = −Ξ+

cc B 344
[20] = Ωcc .

I t is pointed out that the relations (9, 10) follow from the form of the inter-
action (13). For completeness we spell out the kinetic term written in terms
of the SU(4) multiplet fields:

L
SU (4)
kin = 1

4

4

i , j = 1

(∂µ Φ
i
[16], j ) (∂µ Φ

j
[16], i ) − m 2

[16]Φ
i
[16], j Φ

j
[16], i

+ 1
2

4

i , j ,k = 1

B̄
[20]
i j k i /∂ − M [20] B i j k

[20] . (14)

In contrast to the coupling constants the assumption of a SU(4) symmetry is
quite nonsensical for the meson and baryon masses [34]. The notion of m [16]

and M [20] in (14) is introduced only to illustrate the normalization of the fields.

W e close this section by investigating the coupling of heavy vector mesons,

7

t-channel exchange of the light or heavy vector mesons. This important piece
of information is lost in (23).

In this work we neglect the t-dependence of the interaction kernel insisting
on t = 0 in (21). Following [11,13] the s-wave projected effective scattering
kernel, V ( I ,S,C ) (

√
s ), is readily constructed:

V ( I ,S,C )(
√

s ) =
V ∈[16]

C
( I ,S,C )
V

8m2
V

2
√

s − M − M̄ + (M̄ − M )
m̄2 − m2

m2
V

,(25)

where M , M̄ and m, m̄ are the masses of initial and final baryon and meson
states. The scattering amplitudes, M ( I ,S,C ) (

√
s ), take the simple form

M ( I ,S,C ) (
√

s ) = 1− V ( I ,S,C ) (
√

s ) J ( I ,S,C )(
√

s )
−1

V ( I ,S,C )(
√

s ) . (26)

The unitarity loop function, J ( I ,S,C ) (
√

s ), is a diagonal matrix. Each element
depends on the masses of intermediate meson and baryon, m and M , respec-
tively:

J(
√

s ) = M + (M 2 + p2
cm )1/2 I (

√
s ) − I (µ) ,

I (
√

s ) =
1

16π2

pcm√
s

ln 1−
s − 2pcm

√
s

m2 + M 2
− ln 1−

s + 2 pcm

√
s

m2 + M 2

+
1

2

m2 + M 2

m2 − M 2
−

m2 − M 2

2 s
ln

m2

M 2
+ 1 + I (0) , (27)

where
√

s = M 2 + p2
cm + m2 + p2

cm . A crucial ingredient of the approach

developed in [11,13] is its approximate crossing symmetry guaranteed by a
proper choice of the subtraction scales µ . The latter depends on the quan-
tum number (I , S, C) but should be chosen uniformly within a given sector
[11,13,14,15]. W e insist on

µ = m2
th + M 2

th , m th + M th = M in{ m a + M a } . (28)

As a consequence of (28) the s-channel and u-channel unitarized amplitudes
involving the lightest channels can be matched smoothly at the subtraction
point µ [11,13,14,15]. The construction (28) implies that the effect of heavy
channels, like the ηc N channel, on the light channels, like the πN channel,
is naturally suppressed. Since the ηc N loop function is extremely smooth for√

s ≪ mηc + M N , enforcing the loop to vanish at s = µ2 = m2
π + m2

N ensures
that the heavy channel has a negligible effect on the low-energy scattering of

11

Lagrangian with Flavor SU(4) symmetry

Coupled-channel equation

(Isospin, Srangeness)

Meson-baryon coupling model

< 4 GeV

η’N, ηcN, DΣc, DΛc

Pc(4380) Γ=205 MeV, Pc(4450) Γ=39 MeV
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2. Departamento de F ı́sica Teórica and I F I C, Centro M ixto Universidad de Valencia-CSI C,
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The interaction between various charmed mesons and charmed baryons are studied within the
framework of the coupled channel unitary approach with the local hidden gauge formalism . Several
meson-baryon dynamically generated narrow N ∗ and Λ∗ resonances with hidden charm are predicted
with mass above 4 GeV and width smaller than 100 M eV . The predicted new resonances definitely
cannot be accommodated by quark models with three constituent quarks and can be looked for at
the forthcoming PANDA/FA IR experiments.

PACS numbers: 14.20.Gk, 13.30.E g, 13.75.Jz

Up to now, all established baryons can be ascribed
into 3-quark (qqq) configurations [1], although some of
them were suggested to be meson-baryon dynamically
generated states [2–8] or states with large (qqqqq̄) compo-
nents [9–11]. A difficulty to pin down the nature of these
baryon resonances is that the predicted states from vari-
ous models are around the same energy region and there
are always some adjustable ingredients in each model to
fi t the experimental data. I n this letter, we report a study
of the interactions between various charmed mesons and
charmed baryons within the framework of the coupled
channel unitary approach with the local hidden gauge
formalism. Several meson-baryon dynamically generated
narrow N ∗ and Λ∗ resonanceswith hidden charm are pre-
dicted with mass above 4 GeV and width smaller than
100 M eV. The predicted new resonances can be looked
for at the forthcoming PANDA/FAIR experiments [13].
I f confi rmed, they definitely cannot be accommodated by
quark models with three constituent quarks.

W e follow the recent approach of Ref. [12] and extend
it from three flavors to four. W e consider the P B →
P B and V B → V B interaction by exchanging a vector
meson, as shown by the Feynman diagrams in Fig. 1.

The effective Lagrangians for the interactions involved
are [12]:

L V V V = i g⟨V µ [V ν , ∂µ Vν ]⟩

L P P V = − i g⟨V µ [P, ∂µ P ]⟩

L B B V = g(⟨B̄ γµ [V µ , B ]⟩ + ⟨B̄ γµ B ⟩⟨V µ ⟩) (1)

where P and V stand for pseudoscalar and vector mesons
of the 16-plet of SU(4), respectively.

Under the low energy approximation, the three mo-
mentum versus the mass of the meson can be neglected.
W e can just take the γ0 component of Eq. (1). The three-
momentum and energy of the exchanged vector are both
much smaller than its mass, so its propagator is approx-
imately gµ ν /M 2

V . Then with g = M V /2f the transition
potential corresponding to the diagrams of Fig. 1 are

B
1

V*V*

(a) (b)

P
1

P
2 V

1

B
2

B
1

B
2

V
2

FIG . 1: The Feynman diagrams of pseudoscalar-baryon (a)
or vector- baryon (b) interaction via the exchange of a vector
meson. P1 , P2 is D − , D̄ 0 or D −

s , and V1 , V2 is D ∗− , D̄ ∗0 or
D ∗−

s , and B 1 , B 2 is Σ c , Λ+
c , Ξc , Ξ

′
c or Ωc , and V ∗ is ρ, K ∗ , φ

or ω.

given by

Vab(P1 B 1 →P2 B 2 ) =
Cab

4f 2
(E P1 + E P2 ) , (2)

Vab(V1 B 1 →V2 B 2 ) =
Cab

4f 2
(E V1 + E V2 ) ϵ⃗1 · ϵ⃗2 , (3)

where the a, b stand for different channels of P1 (V1 )B 1

and P2 (V2 )B 2 , respectively. The E is the energy of cor-
responding particle. The ϵ⃗ is the polarization vector of
the initial or final vector. And the ϵ01, 2 component is ne-
glected consistently with taking p⃗/M V ∼ 0, with p⃗ the
momentum of the vector meson. The Cab coefficients
can be obtained by the SU(4) Clebsch Gordan Coeffi-
cients which we take from Ref. [14]. W e list the values
of the Cab coefficients for P B → P B with isospin and
strangeness (I , S) = (1/2, 0) and (0, -1) explicitly in Ta-
ble I and Table I I , respectively.

W ith the transition potential, the coupled-channel
scattering matrix can be obtained by solving the coupled-
channel Bethe-Salpeter equation in the on-shell factoriza-
tion approach of Refs.[3, 5]

T = [1 − V G]− 1V (4)

with G being the loop function of a meson (P), or a vec-
tor (V), and a baryon (B). The poles in the T matrix are
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The interaction between various charmed mesons and charmed baryons are studied within the
framework of the coupled channel unitary approach with the local hidden gauge formalism . Several
meson-baryon dynamically generated narrow N ∗ and Λ∗ resonances with hidden charm are predicted
with mass above 4 GeV and width smaller than 100 M eV . The predicted new resonances definitely
cannot be accommodated by quark models with three constituent quarks and can be looked for at
the forthcoming PANDA/FA IR experiments.

PACS numbers: 14.20.G k, 13.30.E g, 13.75.Jz

Up to now, all established baryons can be ascribed
into 3-quark (qqq) configurations [1], although some of
them were suggested to be meson-baryon dynamically
generated states [2–8] or states with large (qqqqq̄) compo-
nents [9–11]. A difficulty to pin down the nature of these
baryon resonances is that the predicted states from vari-
ous models are around the same energy region and there
are always some adjustable ingredients in each model to
fi t the experimental data. In this letter, we report a study
of the interactions between various charmed mesons and
charmed baryons within the framework of the coupled
channel unitary approach with the local hidden gauge
formalism. Several meson-baryon dynamically generated
narrow N ∗ and Λ∗ resonanceswith hidden charm are pre-
dicted with mass above 4 GeV and width smaller than
100 M eV. The predicted new resonances can be looked
for at the forthcoming PANDA/FAIR experiments [13].
I f confirmed, they definitely cannot be accommodated by
quark models with three constituent quarks.

W e follow the recent approach of Ref. [12] and extend
it from three flavors to four. W e consider the P B →
P B and VB → V B interaction by exchanging a vector
meson, as shown by the Feynman diagrams in Fig. 1.

The effective Lagrangians for the interactions involved
are [12]:

L V V V = i g⟨V µ [V ν , ∂µ Vν ]⟩

L P P V = − i g⟨V µ [P, ∂µ P ]⟩

L B B V = g(⟨B̄ γµ [V µ , B ]⟩ + ⟨B̄ γµ B ⟩⟨V µ ⟩) (1)

where P and V stand for pseudoscalar and vector mesons
of the 16-plet of SU(4), respectively.

Under the low energy approximation, the three mo-
mentum versus the mass of the meson can be neglected.
W e can just take the γ0 component of Eq. (1). The three-
momentum and energy of the exchanged vector are both
much smaller than its mass, so its propagator is approx-
imately gµ ν/M 2

V . Then with g = M V /2f the transition
potential corresponding to the diagrams of Fig. 1 are

FIG . 1: T he Feynman diagrams of pseudoscalar-baryon (a)
or vector- baryon (b) interaction via the exchange of a vector
meson. P1 , P2 is D − , D̄ 0 or D −

s , and V1 , V2 is D ∗− , D̄ ∗0 or
D ∗−

s , and B 1 , B 2 is Σ c , Λ+
c , Ξc , Ξ

′
c or Ωc , and V ∗ is ρ, K ∗ , φ

or ω.

given by

Vab(P1 B 1 →P2 B 2 ) =
Cab

4f 2
(E P1 + E P 2 ) , (2)

Vab(V1 B 1 →V2 B 2 ) =
Cab

4f 2
(E V1 + E V2 ) ϵ⃗1 · ϵ⃗2 , (3)

where the a, b stand for different channels of P1 (V1 )B 1

and P2 (V2 )B 2 , respectively. The E is the energy of cor-
responding particle. The ϵ⃗ is the polarization vector of
the initial or final vector. And the ϵ01, 2 component is ne-
glected consistently with taking p⃗/M V ∼ 0, with p⃗ the
momentum of the vector meson. The Cab coefficients
can be obtained by the SU(4) Clebsch Gordan Coeffi-
cients which we take from Ref. [14]. W e list the values
of the Cab coefficients for P B → P B with isospin and
strangeness (I , S) = (1/2, 0) and (0, -1) explicitly in Ta-
ble I and Table I I , respectively.

W ith the transition potential, the coupled-channel
scattering matrix can be obtained by solving the coupled-
channel Bethe-Salpeter equation in the on-shell factoriza-
tion approach of Refs.[3, 5]

T = [1 − V G]− 1V (4)

with G being the loop function of a meson (P), or a vec-
tor (V), and a baryon (B). The poles in the T matrix are
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The interaction between various charmed mesons and charmed baryons are studied within the
framework of the coupled channel unitary approach with the local hidden gauge formalism. Several
meson-baryon dynamically generated narrow N ∗ and Λ∗ resonances with hidden charm are predicted
with mass above 4 GeV and width smaller than 100 M eV. The predicted new resonances definitely
cannot be accommodated by quark models with three constituent quarks and can be looked for at
the forthcoming PANDA/FAIR experiments.

PACS numbers: 14.20.Gk, 13.30.Eg, 13.75.Jz

Up to now, all established baryons can be ascribed
into 3-quark (qqq) configurations [1], although some of
them were suggested to be meson-baryon dynamically
generated states [2–8] or stateswith large (qqqqq̄) compo-
nents [9–11]. A difficulty to pin down the nature of these
baryon resonances is that the predicted states from vari-
ous models are around the same energy region and there
are always some adjustable ingredients in each model to
fit the experimental data. In this letter, we report a study
of the interactions between various charmed mesons and
charmed baryons within the framework of the coupled
channel unitary approach with the local hidden gauge
formalism. Several meson-baryon dynamically generated
narrow N ∗ and Λ∗ resonanceswith hidden charm are pre-
dicted with mass above 4 GeV and width smaller than
100 MeV. The predicted new resonances can be looked
for at the forthcoming PANDA/FAIR experiments [13].
I f confirmed, they definitely cannot be accommodated by
quark models with three constituent quarks.

W e follow the recent approach of Ref. [12] and extend
it from three flavors to four. W e consider the PB →
PB and VB → VB interaction by exchanging a vector
meson, as shown by the Feynman diagrams in Fig. 1.

The effective Lagrangians for the interactions involved
are [12]:

LV V V = i g⟨V µ [V ν , ∂µVν ]⟩

LP P V = − i g⟨V µ [P, ∂µ P]⟩

LB B V = g(⟨B̄γµ [V µ , B ]⟩ + ⟨B̄γµ B ⟩⟨V µ ⟩) (1)

where P and V stand for pseudoscalar and vector mesons
of the 16-plet of SU(4), respectively.

Under the low energy approximation, the three mo-
mentum versus the mass of the meson can be neglected.
W e can just take the γ0 component of Eq. (1). The three-
momentum and energy of the exchanged vector are both
much smaller than its mass, so its propagator is approx-
imately gµ ν/M 2

V . Then with g = M V /2f the transition
potential corresponding to the diagrams of Fig. 1 are

FIG. 1: The Feynman diagrams of pseudoscalar-baryon (a)
or vector-baryon (b) interaction via the exchange of a vector
meson. P1 , P2 is D − , D̄ 0 or D −

s , and V1 , V2 is D ∗− , D̄ ∗0 or
D ∗−

s , and B 1 , B 2 is Σc , Λ
+
c , Ξc , Ξ

′
c or Ωc , and V ∗ is ρ, K ∗ , φ

or ω.

given by

Vab(P1 B 1 →P2 B 2 ) =
Cab

4f 2
(E P1 + E P2 ), (2)

Vab(V1 B 1 →V2 B 2 ) =
Cab

4f 2
(E V1 + E V2 )ϵ⃗1 · ϵ⃗2 , (3)

where the a, b stand for different channels of P1(V1)B1

and P2(V2)B2 , respectively. The E is the energy of cor-
responding particle. The ϵ⃗ is the polarization vector of
the initial or final vector. And the ϵ01, 2 component is ne-
glected consistently with taking p⃗/M V ∼ 0, with p⃗ the
momentum of the vector meson. The Cab coefficients
can be obtained by the SU(4) Clebsch Gordan Coeffi-
cients which we take from Ref. [14]. W e list the values
of the Cab coefficients for PB → PB with isospin and
strangeness (I , S) = (1/2, 0) and (0, -1) explicitly in Ta-
ble I and Table I I , respectively.

W ith the transition potential, the coupled-channel
scattering matrix can be obtained by solving the coupled-
channel Bethe-Salpeter equation in the on-shell factoriza-
tion approach of Refs.[3, 5]

T = [1− VG]− 1V (4)

with G being the loop function of a meson (P), or a vec-
tor (V), and a baryon (B). The poles in the T matrix are

2

looked for in the complex plane of
√

s. The ϵ⃗1 · ϵ⃗2 factor
of Eq. (3) factorizes out also in T . Those appearing in
the fi rst R iemann sheet below threshold are considered
as bound states whereas those located in the second Rie-
mann sheet and above the threshold of some channel are
identified as resonances.

TABLE I : Coefficients Ca b in Eq. (2) for ( I , S) = (1/2, 0)

D̄ Σ c D̄ Λ+
c ηcN πN ηN η′N K Σ K Λ

D̄ Σ c −1 0 − 3/2 −1/2 −1/
√

2 1/2 1 0

D̄ Λ+
c 1 3/2 −3/2 1/

√
2 −1/2 0 1

TABLE I I : Coefficients Ca b in Eq. (2) for ( I , S) = (0, −1)

D̄ sΛ
+
c D̄ Ξc D̄ Ξ

′

c ηcΛ πΣ ηΛ η′Λ K̄ N K Ξ

D̄ sΛ
+
c 0 −

√
2 0 1 0 1

3
2
3

−
√

3 0

D̄ Ξc −1 0 1
2

− 3
2

1
6

− 1
12

0 3
2

D̄ Ξ
′

c −1 − 3
2

3
4
− 1

2
1
2

0 1
2

ηcΛ 0 0 0 0 0 0

For the G loop function, there are usually two ways to
regularize it. I n the dimensional regularization scheme
one has [5, 12]

G = i 2M B
d4q

(2π)4

1

(P − q)2−M 2
B + i ε

1

q2−M 2
P + i ε

,

=
2M B

16π2
aµ + ln

M 2
B

µ2
+

M 2
P − M 2

B + s

2s
ln

M 2
P

M 2
B

+
q̄
√

s
ln(s − (M 2

B − M 2
P ) + 2q̄

√
s)

+ ln(s + (M 2
B − M 2

P ) + 2q̄
√

s)

− ln(−s − (M 2
B − M 2

P ) + 2q̄
√

s)

− ln(−s + (M 2
B − M 2

P ) + 2q̄
√

s) , (5)

where q is the four-momentum of the meson, P the total
momentum of the meson and the baryon, s = P 2 and
q̄ denotes the three momentum of the meson or baryon
in the center of mass frame. µ is a regularization scale,
which we take to be 1000 M eV here. Changes in the
scale are reabsorbed in the subtraction constant aµ to
make results scale independent.

The second way for regularization is by putting a cutoff

in the three-momentum. The formula is [3]:

G =
Λ

0

q̄2dq̄

4π2

2M B (ωP + ωB )

ωP ωB (s − (ωP + ωB )2 + i ϵ)
(6)

where ωP = q̄2 + M 2
P , ωB = q̄2 + M 2

B , and Λ is the
cutoff parameter in the three-momentum of the function
loop.

For these two types of G function, the free parameters
are aµ in Eq. (5) and Λ in Eq. (6). W e choose aµ or
Λ so that the shapes of these two functions are almost

the same close to threshold and they take the same value
at threshold. This limits the aµ to be around -2.3 with
the corresponding Λ around 0.8 GeV, values which are
within the natural range for effective theories [5]. Since
varying the G function in a reasonable range does not
influence our conclusion qualitatively, we present our nu-
merical results in the dimensional regularization scheme
with aµ = −2.3 in this letter.

From the T matrix for the P B → P B and V B → V B
coupled-channel systems, we can find the pole positions
zR . Six poles are found in the real axes below threshold
and therefore they are bound states. For these cases the
coupling constants are obtained from the amplitudes in
the real axis. These amplitudes behave close to the pole
as:

Tab =
ga gb

√
s − zR

. (7)

W e can use the residue of Ta a to determine the value of
ga , except for a global phase. Then, the other couplings
are derived from

gb = lim√
s→ zR

(
ga Tab

Ta a
) . (8)

The obtained pole positions zR and coupling constants
gα are listed in Tables I I I and IV . Among six states,
four of them couple only to one channel while two states
couple to two channels.

( I , S) zR (M eV ) ga

(1/2, 0) D̄ Σ c D̄ Λ+
c

4269 2.85 0

(0, −1) D̄ sΛ
+
c D̄ Ξc D̄ Ξ′

c

4213 1.37 3.25 0

4403 0 0 2.64

TABLE I I I : Pole positions zR and coupling constants ga for
the states from P B → P B .

( I , S) zR (M eV ) ga

(1/2, 0) D̄ ∗Σ c D̄ ∗Λ+
c

4418 2.75 0

(0, −1) D̄ ∗
s Λ

+
c D̄ ∗Ξc D̄ ∗Ξ′

c

4370 1.23 3.14 0

4550 0 0 2.53

TABLE IV : Pole position and coupling constants for the
bound states from V B → V B .

As all the states that we find have zero width, we
should take into account some decay mechanisms. Thus,
we consider the decay of the states to a light baryon
plus either a light meson or a charmonium through heavy
charmed meson exchanges by means of box diagrams as
it was done in [15, 16]. Coupling to these additional
channels with thresholds lower than the masses of pre-
viously obtained bound states provides decay widths to

2

looked for in the complex plane of
√

s. The ϵ⃗1 · ϵ⃗2 factor
of Eq. (3) factorizes out also in T . Those appearing in
the fi rst R iemann sheet below threshold are considered
as bound states whereas those located in the second Rie-
mann sheet and above the threshold of some channel are
identified as resonances.

TABLE I : Coefficients Ca b in Eq. (2) for ( I , S) = (1/2, 0)

D̄ Σ c D̄ Λ+
c ηcN πN ηN η′N K Σ K Λ

D̄ Σ c −1 0 − 3/2 −1/2 −1/
√

2 1/2 1 0

D̄ Λ+
c 1 3/2 −3/2 1/

√
2 −1/2 0 1

TABLE I I : Coefficients Ca b in Eq. (2) for ( I , S) = (0, −1)

D̄ sΛ
+
c D̄ Ξc D̄ Ξ

′

c ηcΛ πΣ ηΛ η′Λ K̄ N K Ξ

D̄ sΛ
+
c 0 −

√
2 0 1 0 1

3
2
3

−
√

3 0

D̄ Ξc −1 0 1
2 − 3

2
1
6 − 1

12 0 3
2

D̄ Ξ
′

c −1 − 3
2

3
4
− 1

2
1
2

0 1
2

ηcΛ 0 0 0 0 0 0

For the G loop function, there are usually two ways to
regularize it. In the dimensional regularization scheme
one has [5, 12]

G = i 2M B
d4q

(2π)4

1

(P − q)2−M 2
B + i ε

1

q2−M 2
P + i ε

,

=
2M B

16π2
aµ + ln

M 2
B

µ2
+

M 2
P − M 2

B + s

2s
ln

M 2
P

M 2
B

+
q̄
√

s
ln(s − (M 2

B − M 2
P ) + 2q̄

√
s)

+ ln(s + (M 2
B − M 2

P ) + 2q̄
√

s)

− ln(−s − (M 2
B − M 2

P ) + 2q̄
√

s)

− ln(−s + (M 2
B − M 2

P ) + 2q̄
√

s) , (5)

where q is the four-momentum of the meson, P the total
momentum of the meson and the baryon, s = P 2 and
q̄ denotes the three momentum of the meson or baryon
in the center of mass frame. µ is a regularization scale,
which we take to be 1000 M eV here. Changes in the
scale are reabsorbed in the subtraction constant aµ to
make results scale independent.

The second way for regularization is by putting a cutoff

in the three-momentum. The formula is [3]:

G =
Λ

0

q̄2dq̄

4π2

2M B (ωP + ωB )

ωP ωB (s − (ωP + ωB )2 + i ϵ)
(6)

where ωP = q̄2 + M 2
P , ωB = q̄2 + M 2

B , and Λ is the
cutoff parameter in the three-momentum of the function
loop.

For these two types of G function, the free parameters
are aµ in Eq. (5) and Λ in Eq. (6). W e choose aµ or
Λ so that the shapes of these two functions are almost

the same close to threshold and they take the same value
at threshold. This lim its the aµ to be around -2.3 with
the corresponding Λ around 0.8 GeV, values which are
within the natural range for effective theories [5]. Since
varying the G function in a reasonable range does not
influence our conclusion qualitatively, we present our nu-
merical results in the dimensional regularization scheme
with aµ = −2.3 in this letter.

From the T matrix for the P B → P B and V B → V B
coupled-channel systems, we can find the pole positions
zR . Six poles are found in the real axes below threshold
and therefore they are bound states. For these cases the
coupling constants are obtained from the amplitudes in
the real axis. These amplitudes behave close to the pole
as:

Tab =
ga gb

√
s − zR

. (7)

W e can use the residue of Ta a to determine the value of
ga , except for a global phase. Then, the other couplings
are derived from

gb = lim√
s→zR

(
ga Tab

Ta a
) . (8)

The obtained pole positions zR and coupling constants
gα are listed in Tables I I I and IV . Among six states,
four of them couple only to one channel while two states
couple to two channels.

( I , S) zR (M eV ) ga

(1/2, 0) D̄ Σ c D̄ Λ+
c

4269 2.85 0

(0, −1) D̄ sΛ
+
c D̄ Ξc D̄ Ξ′

c

4213 1.37 3.25 0

4403 0 0 2.64

TABLE I I I : Pole positions zR and coupling constants ga for
the states from P B → P B .

(I , S) zR (M eV ) ga

(1/2, 0) D̄ ∗Σ c D̄ ∗Λ+
c

4418 2.75 0

(0, −1) D̄ ∗
s Λ

+
c D̄ ∗Ξc D̄ ∗Ξ′

c

4370 1.23 3.14 0

4550 0 0 2.53

TABLE IV : Pole position and coupling constants for the
bound states from V B → V B .

As all the states that we find have zero width, we
should take into account some decay mechanisms. Thus,
we consider the decay of the states to a light baryon
plus either a light meson or a charmonium through heavy
charmed meson exchanges by means of box diagrams as
it was done in [15, 16]. Coupling to these additional
channels with thresholds lower than the masses of pre-
viously obtained bound states provides decay widths to

3

these states and modifies the masses of these states only
slightly. The results are given in Tables V and VI . W e do
not consider the transitions between V B and P B states
because in our t-channel vector meson exchange model
they involve an anomalous V V P vertex which is found to
be very small [15]. The transitions between V B and P B
states through t-channel pseudoscalar meson exchanges
are also found to be very small. As an example, we esti-
mate the partial decay width of our D̄ Σ c molecular state
N ∗+

cc̄ (4265) to the J/ψ p final state through the t-channel
pseudoscalar D 0 meson exchange as shown by Fig. 2.
Following a similar approach as in Ref. [17], the par-
tial decay width is about 0.01 M eV, which is 3 orders of
magnitude smaller than the corresponding decay to ηcp
of 23.4 M eV.

( I , S) M Γ Γ i

(1/2, 0) πN ηN η′N K Σ ηcN
4261 56.9 3.8 8.1 3.9 17.0 23.4

(0, −1) K̄ N πΣ ηΛ η′Λ K Ξ ηcΛ

4209 32.4 15.8 2.9 3.2 1.7 2.4 5.8
4394 43.3 0 10.6 7.1 3.3 5.8 16.3

TABLE V : M ass (M ), total width (Γ ) , and the partial decay
width (Γ i ) for the states from P B → P B , with units in M eV .

(I , S) M Γ Γ i

(1/2, 0) ρN ωN K ∗Σ J/ψN
4412 47.3 3.2 10.4 13.7 19.2

(0, −1) K̄ ∗ N ρΣ ωΛ φΛ K ∗Ξ J/ψΛ
4368 28.0 13.9 3.1 0.3 4.0 1.8 5.4
4544 36.6 0 8.8 9.1 0 5.0 13.8

TABLE V I : M ass (M ), total width (Γ) , and the partial decay
width (Γ i ) for the states from V B → V B with units in M eV .
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FIG . 2: Feynman diagram for N ∗+
cc̄ (4265) → J/ψ p.

I t is very interesting that the six N ∗ and Λ∗ states are
all above 4200 M eV, but with quite small decay widths.
In principle, one might think that the width of these
massive ob jects should be large because there are many
channels open and there is much phase space for decay.
However, because the hidden cc̄ components involved in
these states, all decays within our model are tied to the
necessity of the exchange of a heavy charmed vector me-
son and hence are suppressed. I f these predicted nar-
row N ∗ and Λ∗ resonances with hidden charm are found,
they definitely cannot be accommodated by quark mod-
els with three constituent quarks.

In order to look for these predicted new N ∗ and Λ∗

states, we estimate the production cross section of these
resonances at FAIR . W ith a p̄ beam of 15 GeV/c one has√

s = 5470 M eV , which allows one to observe N ∗ reso-
nances in p̄X production up to a mass M X ≃ 4538 M eV
or Y ∗ hyperon resonances in Λ̄Y production up to a
mass M Y ≃ 4355 M eV . W e take N ∗+

cc̄ (4265) as an
example. I ts largest decay channel is ηcp. Following
the approach as in Ref. [18], we calculate its contribu-
tion to pp̄ → pp̄ηc through processes as shown in Fig.
3(a,b) and also those from the conventional mechanism
as shown in Fig. 3(c,d). For the conventional mecha-
nism, the ppηc coupling is determined from the partial
decay width of ηc → pp̄ [1]. For the new mechanism with
the N ∗+

cc̄ (4265), its couplings to ηcp and πp are deter-
mined from its corresponding partial decay widths listed
in Table V . I t is found that while the conventional mech-
anism gives a cross section about 0.1nb, the new mecha-
nism with the N ∗+

cc̄ (4265) results in a cross section about
0.1µb, about 3 orders of magnitude larger. W ith the de-
signed luminosity of about 1031cm − 2s− 1 for the p̄ beam
at FAIR [13], this corresponds to an event production
rate of more than 80000 per day. W ith branching ratios
for ηc → K K̄ π, ηππ, K + K − π+ π− , 2π+ 2π− of a few
percent for each channel, the N ∗+

cc̄ (4265) should be easily
observed from the ηcp and ηcp̄ invariant mass spectra for
the pp̄ → pp̄ηc reaction by the designed PANDA detec-
tor [13]. The N ∗+

cc̄ (4265) should also be easily observed
in the pp̄ → pp̄J/ψ reaction with clean J/ψ signal from
its large decay ratio to e+ e− and µ+ µ− although the pro-
duction rate is about 3 orders of magnitude smaller than
the pp̄ → pp̄ηc process.

FIG . 3: Feynman diagrams of the reaction pp̄ → pp̄ηc

The D̄ ∗Σc molecular state N ∗ (4415) has a large decay
branching ratio to J/ψ p. I ts contribution to the pp̄ →
pp̄J/ψ reaction is estimated to be around 2nb, about one
order of magnitude larger than the contribution from the
N ∗+

cc̄ (4265), and hence should be observed more clearly
in this reaction. Similarly, the predicted D −

s Λ
+
c -D̄ Ξc

coupled-channel bound state Λ∗
cc̄(4210) states should

be easily observed in pp̄ → ΛΛ̄ηc reaction at FAIR.
The other three predicted Λ∗

cc̄ resonances have too high
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slightly. The results are given in Tables V and VI . W e do
not consider the transitions between V B and P B states
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FIG. 7. The results of the J = 1/2, I = 3/2 sector. (a): The squared amplitudes of three channels

except for J/ψ∆ channel. (b): The real parts of G function in D̄ ∗Σ∗
c channel.

where gi is the coupling of the resonance to the i channel. As one can see in Eq. (65), gi gj

is the residue of Ti j at the pole. For a diagonal transitions we have

g2
i = lim√

s→
√

sp

Ti i (
√

s −
√

sp). (66)

The determination of the couplings gives as an idea of the structure of the states found,
since according to [68, 72], the couplings are related to the wave function at the origin for
each channel.

Let us begin with the J = 1/2, I = 3/2 sector. W e can see in the Eq. (59) that the large
potentials are repulsive. So, we should not expect any bound states or resonances. Yet,
technically we find bound states in the fi rst Riemann sheet, as one can see in Fig. 7(a) for
different channels. However, inspection of the energies tell us that these are states bound
by about 250 MeV, a large number for our intuition, even more when we started from a
repulsive potential. The reason for this, which forces us to reject these poles on physical
grounds, is that the G function below threshold turns out to be positive for large binding
energies (see Fig. 7(b) and discussions in [69]), contradicting what we would have for the G
function evaluated with any cut off, or in Quantum M echanics with a given range. These
poles are then discarded and, thus, we do not find bound states or resonances in I = 3/2 in
our approach.

The W T extended model of Ref.[47] predicts µ3 = −2, which leads to some attractive
interactions in the space generated by D̄ ∗Σc , D̄ Σ∗

c and D̄ ∗Σ∗
c . These give rise to three odd

parity ∆ − like resonances (two with spin 1/2 and one with spin 3/2) with masses around 4
GeV. In addition, two other states show up as cusps very close to the ∆ J/ψ threshold, and
their real existence would be unclear.

Our results for the J = 1/2, I = 1/2 sector are shown in Fig. 8. From the squared
amplitudes of |T |2, we can find three clear peaks with non zero width around the energy
range 4200 ∼ 4500 M eV, which are not far away below the thresholds of D̄ Σc, D̄ ∗Σc, D̄ ∗Σ∗

c

respectively. The relatively small width of about 40 MeV of these states allows to distinguish
them clearly. W e have checked that in the energy ranges where these peaks appear, the real
parts of the loop function G, Eq. (64), are negative in these channels. Thus these peaks
are acceptable as physical ones. Then, because of the non zero width, we look for the
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FIG. 8. The squared amplitudes of the J = 1/2, I = 1/2 sector.

poles corresponding to these peaks in the second Riemann sheet, and find the poles at
(4261.87 + i17.84) M eV, (4410.13 + i29.44) MeV, (4481.35 + i28.91) MeV. The couplings
to the various coupled channels for these poles are given in Table I . From Table I we can see

TABLE I . The coupling constants of all channels corresponded certain poles in the J = 1/2, I = 1/2

sector.

4261.87 + i 17.84

ηcN J/ψN D̄ Λc D̄ Σ c D̄ ∗Λc D̄ ∗Σc D̄ ∗Σ ∗
c

gi 1.04 + i 0.05 0.76 − i 0.08 0.02 − i 0.02 3.12 − i 0.25 0.14 − i 0.48 0.33 − i 0.68 0.16 − i 0.28

|gi | 1.05 0.76 0.02 3.13 0.50 0.75 0.32

4410.13 + i 29.44

ηcN J/ψN D̄ Λc D̄ Σ c D̄ ∗Λc D̄ ∗Σc D̄ ∗Σ ∗
c

gi 0.34 + i 0.16 1.43 − 0.12 0.15 − i 0.10 0.20 − i 0.05 0.17 − i 0.11 3.05 − i 0.54 0.07 − i 0.51

|gi | 0.38 1.44 0.18 0.20 0.20 3.10 0.51

4481.35 + i 28.91

ηcN J/ψN D̄ Λc D̄ Σ c D̄ ∗Λc D̄ ∗Σc D̄ ∗Σ ∗
c

gi 1.15 − i 0.04 0.72 + i 0.03 0.18 − i 0.08 0.10 − i 0.03 0.09 − i 0.08 0.09 − i 0.06 2.88 − i 0.57

|gi | 1.15 0.72 0.19 0.10 0.12 0.11 2.93

that the first pole, (4261.87 + i17.84) M eV, couples mostly to D̄ Σc. I t could be considered
like a D̄ Σc bound state which, however, decays into the open channels ηcN and J/ψN . The
D̄ Σc threshold is at 4320.8 M eV and, thus, the D̄ Σc state is bound by about 58 M eV. The
second pole couples most strongly to D̄ ∗Σc. In this channel the threshold is 4462.2 M eV
and thus we have a state bound by about 52 M eV, much in line with what one expects
from heavy quark symmetry comparing this with the former state. This state decays mostly
into the ηcN and J/ψN channels again. These two states correspond to those reported in
[1, 2]. In our work, we get one more new baryon state, (4481.35 + i28.91) MeV, with total
momentum J = 1/2, which couples mostly to D̄ ∗Σ∗

c . Since in [1, 2] one did not include the
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In the charm sector the lower vertex VBB does not have such a simple representation
as in SU(3) and in practice one evaluates the matrix elements using SU(4) symmetry by
means of Clebsch-Gordan coefficients and reduced matrix elements. This is done in [1, 2] (a
discussion on the accuracy of the SU(4) symmetry is done there). Since the 20 representation
for baryon statesof 3/2+ is not considered there, wemust consider these matrix elements here
too. Once again one uses SU(4) symmetry for this vertex to evaluate the matrix elements, as
done in [1, 2]. Alternatively, one can use results of SU(3) symmetry substituting a s quark
by a c quark, or make evaluations using wave functions of the quark model [63], substituting
the s quark by the c quark.

The γµ matrix of the VBB vertex (see Eq. (45)) gets simplified in the approach, where
we neglect the three momenta versus the mass of the particles (in this case the baryon).
Thus, only the γ0 becomes relevant, which can be taken as unity within the baryon states
of positive energy that we consider. Then the transition potential corresponding to the
diagram of Fig. 2(b) is given by

Vi j = −Ci j

1

4f 2
(k0 + k′0) ϵ⃗ ϵ⃗ ′, (46)

where k0 , k′0 are the energies of the incoming and outgoing vector mesons, and Ci j numerical
coefficients evaluated as described above. The expression is the same for the pseudoscalar
baryon matrix elements for the same quark content of pseudoscalar and vector mesons,
omitting the ϵ⃗ ϵ⃗ ′factor.

The scattering matrix is evaluated by solving the coupled channels Bethe-Salpeter equa-
tion in the on shell factorization approach of [64–66]

T = [1 − V G]−1 V, (47)

with G being the loop function of a meson and a baryon, which we calculate in dimensional
regularization using the formula of [65] and similar values for the subtraction constants.

The iteration of diagrams produced by the Bethe Salpeter equation in the case of the
vector mesons keeps the ϵ⃗ ϵ⃗ ′factor in each of the terms. Hence, the factor ϵ⃗ ϵ⃗ ′appearing in
the potential V factorizes also in the T matrix for the external vector mesons. A consequence
of this is that the interaction is spin independent and one finds degenerate states having
JP = 1/2− and JP = 3/2− .

In the present work, in the spirit of the heavy quark symmetry, we shall include in the
coupled channels dynamics, the pseudoscalars, vectors, baryons of spin J = 1/2 and baryons
of J = 3/2 using the matrices of Eqs. (29−34).

I V . E VA LU AT I ON OF T H E H QSS LE C ’S I N T H E LOCA L H I D D E N G A U G E

A PPR OA C H

Let us examine first the I = 1/2 sector. As an example let us take D̄Λc → D̄Λc and
D̄ ∗Λc → D̄ ∗Λc. These two interactions are equal as we discussed. This is in agreement with
the general HQSS constraints explicited in Eq. (29) for J = 1/2 and I = 1/2, where both
matrix elements are equal to the LEC’s µ2, and it is also consistent with the diagonal D̄ ∗Λc

entry in Eq. (31) (J = 3/2, I = 1/2). So we see that the HQSS is respected there by the
local hidden gauge results. In addition the interactions of D̄Σc → D̄Σc and D̄ ∗Σc → D̄ ∗Σc
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coefficients evaluated as described above. The expression is the same for the pseudoscalar
baryon matrix elements for the same quark content of pseudoscalar and vector mesons,
omitting the ϵ⃗ ϵ⃗ ′factor.

The scattering matrix is evaluated by solving the coupled channels Bethe-Salpeter equa-
tion in the on shell factorization approach of [64–66]

T = [1− V G]−1 V, (47)

with G being the loop function of a meson and a baryon, which we calculate in dimensional
regularization using the formula of [65] and similar values for the subtraction constants.

The iteration of diagrams produced by the Bethe Salpeter equation in the case of the
vector mesons keeps the ϵ⃗ ϵ⃗ ′factor in each of the terms. Hence, the factor ϵ⃗ ϵ⃗ ′appearing in
the potential V factorizes also in theT matrix for the external vector mesons. A consequence
of this is that the interaction is spin independent and one finds degenerate states having
JP = 1/2− and JP = 3/2− .

In the present work, in the spirit of the heavy quark symmetry, we shall include in the
coupled channels dynamics, the pseudoscalars, vectors, baryons of spin J = 1/2 and baryons
of J = 3/2 using the matrices of Eqs. (29−34).

I V . E VA LU AT I ON OF T H E H QSS LE C’S I N T H E LOCA L H I D D E N G A U G E

A PPR OA CH

Let us examine first the I = 1/2 sector. As an example let us take D̄Λc → D̄Λc and
D̄ ∗Λc → D̄ ∗Λc. These two interactions are equal as we discussed. This is in agreement with
the general HQSS constraints explicited in Eq. (29) for J = 1/2 and I = 1/2, where both
matrix elements are equal to the LEC’s µ2, and it is also consistent with the diagonal D̄ ∗Λc

entry in Eq. (31) (J = 3/2, I = 1/2). So we see that the HQSS is respected there by the
local hidden gauge results. In addition the interactions of D̄Σc → D̄Σc and D̄ ∗Σc → D̄ ∗Σc

14

W e should stress, once more, that µ and λ depend on isospin, and thus those LEC’s
corresponding to I = 1/2 are not the same as those corresponding to I = 3/2. Though,
they can be related using SU(3) flavor symmetry.

There is a total of 7 (6µ′s and λ2) independent LEC’s for I = 1/2, while for I = 3/2, we
have 4 (3λ′s and µ3) LEC’s. Thus, when one neglects open and hidden strange channels, we
have a total of 11 LEC’s. The extension of the W T model, using SU(8) spin-flavor symmetry
[47], provides predictions for all these LEC’s. Namely,2

I = 1/2 → µ1 = 0, µ2 = µ3 = 1, µ12 = −µ13 =
√

6, µ23 = −3, λ2 = −2; (35)

I = 3/2 → µ3 = −2, λ1 = 0, λ12 = 2
√

3, λ2 = 4, (36)

up to an overall 1
4f 2 (k0+ k′0) factor, being k0 and k′0 the center mass energies of the incoming

and outgoing mesons. The extension of the local hidden gauge approach to the charm sector
provides different values, as we discuss below.

Note that in [47] (Sec. I I .F) the 12 most general operators allowed by SU(3)×HQSS in
the hidden charm baryon-meson sector were already given. Moreover, the reduction of these
Lagrangians when no strangeness is involved was also discussed. In this latter case, there
are 11 independent couplings, which determine the 11 LEC’s (µ′s and λ′s) introduced in
Eqs. (29−34).

I I I . B R I E F D E SC R I P T I O N O F T H E L O C A L H I D D E N G A U G E FO R M A L I SM

W e summarize the formalism of the hidden gauge interaction for vector mesons which we
take from [3, 4] (see also useful Feynman rules in [56]) extended to SU(4). The Lagrangian
accounting for the interaction of vector mesons amongst themselves is given by

L I I I = −
1

4
⟨VµνV

µν⟩ , (37)

where the ⟨⟩ symbol represents the trace in the SU(4) space and Vµν is given by

Vµν = ∂µVν − ∂νVµ − i g[Vµ , Vν] , (38)

with the coupling of the theory given by g = M V

2f
where f = 93 M eV is the pion decay

constant. The magnitude Vµ is the SU(4) matrix of the vectors of the meson 15-plet +
singlet, given by [57]

Vµ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ0
√

2
+ ω√

2
ρ+ K ∗+ D̄ ∗0

ρ− − ρ0
√

2
+ ω√

2
K ∗0 D ∗−

K ∗− K̄ ∗0 φ D ∗−
s

D ∗0 D ∗+ D ∗+
s J/ψ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

µ

. (39)

2 W e thank L. L. Salcedo.
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P P

V(q)

[a]

B B

V V

V(q)

[b]

FIG. 2. D iagrams obtained in the effective chiral Lagrangians for interaction of pseudoscalar [a] or

vector [b] mesons with the octet or decuplet of baryons.

The interaction of L I I I provides a contact term which comes from [Vµ , Vν][Vµ , Vν]

L
(c)
I I I =

g2

2
⟨VµVνV

µV ν − VνVµV µV ν⟩ , (40)

as well as to a three vector vertex from

L
(3V )
I I I = ig⟨(∂µVν − ∂νVµ )V µV ν⟩ = ig⟨(V µ∂νVµ − ∂νVµV µ )V ν⟩ . (41)

I t is worth recalling the analogy with the coupling of vectors to pseudoscalars given in
the same formalism by

L V P P = − i g ⟨[P, ∂µP ]V µ ⟩, (42)

where P is the SU(4) matrix of the pseudoscalar fields,

P =

⎛

⎜
⎜
⎜
⎜
⎝

π0
√

2
+ η8√

6
+ η̃c√

12
+ η̃′c√

4
π+ K + D̄ 0

π− − π0
√

2
+ η8√

6
+ η̃c√

12
+ η̃′c√

4
K 0 D −

K − K̄ 0 − 2η8√
6

+ η̃c√
12

+ η̃′c√
4

D −
s

D 0 D + D +
s − 3η̃c√

12
+ η̃′c√

4

⎞

⎟
⎟
⎟
⎟
⎠

. (43)

where η̃c stands for the SU(3) singlet of the 15th SU(4) representation and we denote η̃′c for
the singlet of SU(4) (see quark content in [2]). The physical ηc can be written as [2]

ηc =
1

2
(−

√
3η̃c + η̃′c) . (44)

The philosophy of the local hidden gauge in the meson-baryon sector is that the interac-
tion is driven by the exchange of vector mesons, as depicted in Fig. 2. Eqs. (41) and (42)
provide the upper vertex of these Feyman diagrams. I t was shown in [24] that the vertices of
Eq. (41) and Eq. (42) give rise to the same expression in the limit of small three momenta
of the vector mesons compared to their mass, a limit which is also taken in our calculations.
This makes the work technically easy and it allows the use of many previous results.

The lower vertex when the baryons belong to the octet of SU(3) is given in terms of the
Lagrangian [58, 59]

L B B V =
g

2
⟨B̄ γµ [V

µ , B ]⟩ + ⟨B̄γµB ⟩⟨V µ ⟩ , (45)

where B is now the SU(3) matrix of the baryon octet [60, 61]. Similarly, one has also a
Lagrangian for the coupling of the vector mesons to the baryons of the decuplet, which can
be found in [62].
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I=1/2, JP=5/2-

Meson-baryon coupling model
DΣc,D*Σc, DΣc*, D*Σc*

Pc(4380) Γ=205 MeV, Pc(4450) Γ=39 MeV

137



QCD sum rule Chen, Chen, Liu, Steele, Zhu, Phys. Rev. Lett. 115 (2015) 17

3/2- 5/2+

Prediction for bottom analog:

Pc(4380) Γ=205 MeV, Pc(4450) Γ=39 MeV

138

Very good agreement with LHCb!



3. Cusp effect
Kinematic anomaly
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Anomalous triangle singularity
3

D̄ (∗)

Σ∗
cΛb

K

J/ψ

N

(c)

Λb

χcJ

Λ∗

N

N

K

J/ψ

(a)

Λb

D ∗∗
s

Λ∗
c

D̄ (∗)

K

J/ψ

N(b)

FIG . 2: T he loop diagrams as a consequence of F ig. 1 where the ATS and kinematic CUSP can be recognized.

TABLE I : T he χ cJ p thresholds which can be enhanced by the ATS via F ig. 2 (a) .

T hreshold masses [M eV ] χ c0 (1P ) 0+ χ c1 (1P ) 1+ χ c2 (1P ) 2+

p 1/2+ 4353 4449 4494

The interesting property of F ig. 2 (a) and (b) is that given the masses of the involved states located within certain
ranges it will allow the internal states to be on-shell simultaneously. This is different from the kinematic CUSP effects
which generally appear as perturbative structures in the invariant mass spectrum. W hen such a condition is satisfied,
the singularity behavior of the integral will produce strong enhancements at the singular points of which the effects
can be measured in the experiment. In particular, the singular points will mostly locate in the vicinity of the two-body
thresholds but not necessarily to be exactly at the thresholds. I t should be realized that the singular property will
not change even when higher partial waves contribute at the interaction vertices. The reason is because the singular
term will always be kept in the decomposition of the integrand in the Feynman parametrization. In another word,
even though the contribution from the singular term relative to other contributions might be small, its enhancement
at the singular point may not be negligible1 . Nevertheless, in the case of Λb → J/ψK − p there are several thresholds
close to each other. The even small singularity enhancement can build up and produce measurable effects.

Since quite a lot of thresholds can appear in the decays of Fig. 2 and we are still lack of information about the
vertex couplings, we only consider low partial waves and thresholds which are close to the masses of interest and we
discuss separately the properties of those three types of loops in Fig. 2.

F igure 2 (a) is a consequence of F ig. 1 (a) where the rescattering between Λ∗ and charmonium states χcJ is
considered. Note that the mass thresholds for p + χ cJ (J = 0, 1, 2) are close to the peak masses for P +

c (4380) and
P +

c (4450) as listed in Table I . A lso, the S-wave scatterings of pχc2 → J/ψp can access the quantum numbers of 3/2+

and 5/2+ for the threshold enhancement. The χ c1 and p scattering can access the quantum numbers of 1/2+ and
3/2+ . T he χ c0p can reach 1/2− and 3/2− via a P wave interaction. I t is interesting to notice that the significant
enhancement to the χ cJ p via the ATS would prefer that the mass of Λ∗ to be larger than 2 GeV. From Fig. 2 (a)
of Ref. [1], it shows that the cross section for K − p is smooth but non-zero. Note that as long as the kinematics
approaching the ATS condition, all the cross sections will contribute to the threshold singularity. I n F ig. 3 we show
the structures in the invariant mass of J/ψp via the triangle diagram of Fig. 2 (a). By varying the relative strengths
of the loop amplitudes, the threshold peaks can match the data. For demonstration we only consider loops of χ c1 and
χc2 at this moment.

1 T he detai led discussion about the AT S and their m anifestations in physical processes can be found in R ef. [15] and there are cases that
the AT S involving higher partial wave interactions can sti l l produce signifi cant threshold enhancem ents [16–21].

4

FIG . 3: T he invariant mass distribution of J/ψp given by the triangle diagram of F ig. 2 (a) . T he vertical dashed lines indicate
the masses of P +

c (4380) and P +
c (4450) , respectively.

TABLE I I : T hresholds accessible in the invariant mass spectrum of J/ψp. T he two numbers in the square bracket have beyond
the allowed phase space for J/ψp.

T hreshold masses [M eV ] Λc (2286) 1/2+ Λc (2595) 1/2− Λc (2625) 3/2− Λc (2880) 5/2+

D̄ (1865) 0− 4151 4457 4493 4746

D̄ ∗ (2007) 1− 4293 4599 4635 4888

D̄ 1 (2420) 1+ 4706 5015 5045 [5300]

D̄ 2 (2460) 2+ 4746 5055 5085 [5340]

I t is possible that the intermediate c̄s in Fig. 1 (b) can form intermediate D̄
(∗ )
sJ states which can decay into D̄ (∗)

and K − . T he intermediate D̄ ( ∗) meson will then scatter the Λc into J/ψp. This process is illustrated in Fig. 2 (b).

Following the analysis of the kinematics of Fig. 2 (b), we find that the heavy D̄
( ∗)
sJ recoil Λ∗

c can satisfy the ATS

condition and the thresholds for the Λ(∗ ) D ( ∗) can be recognized. The accessible thresholds are listed in Table I I .
A lthough one can see from Table I I that in an S wave none of the thresholds matches the experimental measured
masses and favored quantum numbers simultaneously, we will show later that the singular points near threshold can
still match the observed peak positions. A lso, as mentioned earlier that the ATS can still possibly produce observable
effects when higher partial waves are present at the interaction vertices, we then investigate the possible partial waves
for Fig. 2 (b) and see how the ATS would manifest in the invariant mass spectrum.

In Table I I I the thresholds for the Λ
( ∗)
c D̄

( ∗)
sJ around the mass of Λb are listed. To fully satisfy the ATS condition,

the threshold of Λ
(∗ )
c D̄

( ∗)
sJ should be close to the mass of Λb. W e note that for most of the D̄ sΛ

(∗)
c thresholds, they

have already allow a sizeable enhancement at the Λ
( ∗)
c D̄ (∗ ) thresholds.

In Fig. 4 we show the threshold structures arising from Fig. 2 (b) due to the presence of the ATS. Several heavy

D̄
( ∗)
sJ can satisfy the ATS condition and produce strong ATS peaks. As shown in Fig. 4, the threshold enhancement

around 4.45 GeV can be seen clearly. W e also include the widths in the loop calculations and by varying the widths

of the D̄
( ∗)
s states the main feature of the threshold enhancements still hold though the rates will decrease. Apart

from the pronounced peak at 4.45 GeV, there are three small peaks are produced close to Λc(2625)D̄ , Λc(2595)D̄ ∗ ,
and Λc(2625)D̄ ∗ thresholds, respectively, although the kinematics have deviated from the ATS condition.

For F ig. 2 (c), the kinematic effects will be just CUSP structures in the J/ψp invariant mass spectrum. W e do not

discuss the dynamic consequences if the intermediate Σ
(∗ )
c D̄ ( ∗) may have strong couplings, then they may generate

dynamic poles near threshold after proper summation over the bubble loops. Instead, we only show the kinematic
CUSP for which the perturbative nature should not lead to pronounced structures as recently studied in Ref. [9].
I n another word, the observed pronounced peaks may either be produced by possible pole structures or the ATS
mechanisms.

In order to try to distinguish the behavior from a pole structure and the ATS, we generate the invariant mass
spectra of J/ψp in different K − p invariant mass regions the same as Fig. 8 of Ref. [1]. Since the ATS contributions
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F IG . 4: I nvariant mass distributions of J/ψp given by the triangle diagram of F ig. 2 (b) . T he width of the intermediate D
( ∗ )
sJ

are taken as (a) 150 M eV , (b) 50 M eV and (c) 0 M eV , respectively, as a demonstration of the width effects. T he masses of the

D
( ∗ )
sJ are 2860 M eV , 2700 M eV , 2573 M eV and 3040 M eV corresponding to D

( ∗ )
sJ states listed in Table I I I . T he vertical dashed

lines indicate the masses of P +
c (4380) and P +

c (4450) , respectively.
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4. Other things?
Lattice QCD, AdS/QCD, … 141



3. Heavy exotic hadrons -X, Y, Z hadrons-

142

Pc(4380)

Pc(4450)

Recent experiments

Pc(4440)

Pc(4457)

Pc(4312)
LHCb, Phys.Rev.Lett.122, 222001 (2019)

?

Brambilla et al. Phys. Rep. 873 (2020) 1

LHCb, Phys.Rev.Lett.115, 072001 (2015)

Three peak states

same or different?

two peaks!

Pc(4380) Γ~200 MeV (very large)
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3. Heavy exotic hadrons -X, Y, Z hadrons-
π exchange pot. + short-range int.

Y. Yamaguchi et al., Phys. Rev. D96, 114031 (2017)

Y. Yaamguchi et al. Phys. Rev. D101 (2020) 091502

Cf. Y. Shmizu, Y. Yamaguchi, M. Harada, Phys. Rev. D98, 014021 (2018)

Y. Shimizu, Y. Yamaguchi, M. Harada, PTEP2019 (2019)  123D01

Y. Shimizu, Y. Yamaguchi, M. Harada, arXiv:1904.00587 [hep-ph]

2. π exchange pot. 

→ Decay widths

(Yamaguchi etl al. (2020)) 

1. 1Attraction by 5q

Very good agreement!

Predictions
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Aren’t there more charm pentaquarks？

Yes, there are more!
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Pc(4338) JP=1/2+

positive parity (new)

LHCb, Phys. Rev. Lett. 128 (2022) 062001

a few MeV below

Σc*Dbar threshold

Σc*Dbar dynamics (p-wave) may be relevant…



Pcs(udscc)

Charm-strange pentaquark？

ccu duPc
Flavor Octet

(I=1/2)

ccu sdPcs
color octet

Flavor Singlet

(I=0)

Pc(4380), Pc(4450)
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3. Heavy exotic hadrons -X, Y, Z hadrons-



Brief summary of quark model

Three quarks in SU(6)flavor+spin symmetry

Δ N
Three quarks in SU(3)color symmetry
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Totally antisymmetric representation (fermion systems)
A: antisymmetric
S: symmetric
MA: mixed-antisymmetric
MS: mixed-symmetric

SU(6)flavor+spin representation



Brief summary of quark model

Three quarks in SU(6)flavor+spin symmetry

Colored qqq

Three quarks in SU(3)color symmetry

Lowest-dimension:

Mostly attractive

in color-spin int.

𝝀 ⋅ 𝝀 𝝈 ⋅ 𝝈
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Totally antisymmetric representation (fermion systems)
A: antisymmetric
S: symmetric
MA: mixed-antisymmetric
MS: mixed-symmetric

SU(6)flavor+spin representation



FIG. 1. The coordinate of ~R and ~r i ( i = 1, 2, 3) .

The spatial part φ depends on the variables R and r i ( i = 1, 2, 3) (Fig. 1). Here R is the

position vector from the c quark to the c̄ quark, and r i are the vectors for light quarks

i = 1, 2, 3. W e assume for simplicity that the internal angular momenta are S-wave because

we focus on the ground states.

I t is known that the Jacobi coordinates are very useful to solve many-body problems in

general. In the present discussion, however, we simplify the situation in the following way.

W e assume that the c and c̄ quarks are sufficiently heavy, and that the midpoint of c and

c̄, i.e. R / 2, represents the center-of-mass of cc̄qqq system. In this limiting case, we can

assign the original points of the vectors r i to be the center-of-mass of the system. W e notice

that in this treatment the motion of the cc̄ (or uds) cluster to the total system is neglected.

Nevertheless, we expect that this would be a reasonable approximation as long as the mass

of charm quark is much larger than those of light quarks.

As for the spatial wave function, we here consider only compact systems of five quarks

and assume the Gaussian type with extension parameters a for R and b for r i . W e use

the common value b for r 1 , r 2, r 3, because the wave function of the light quarks will

be distributed uniformly in space. In fact, as will be discussed later, the stability of the

pentaquark considered here seems irrelevant to the diquark correlation between two light

quarks, but rather sensitive to the cc̄ correlations. In this sense, we may justify to treat the

common variational parameter b.

W ith the simplifications stated above, we assume the spatial part of the wave function

as

φ(R , r 1, r 2, r 3) =
1

(2⇡a2)
3
4

1

(⇡b2)
9
4

exp

✓

−
|R |2

4a2
−

|r 1|
2 + |r 2|

2 + |r 3|
2

2b2

◆

, (7)

which is normalized by integrating over the space. The values of a and b will be determined

by variational calculation. Note that all the orbital angular momenta are zero.
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that in this treatment the motion of the cc̄ (or uds) cluster to the total system is neglected.

Nevertheless, we expect that this would be a reasonable approximation as long as the mass

of charm quark is much larger than those of light quarks.

As for the spatial wave function, we here consider only compact systems of five quarks

and assume the Gaussian type with extension parameters a for R and b for r i . W e use

the common value b for r 1 , r 2, r 3, because the wave function of the light quarks will

be distributed uniformly in space. In fact, as will be discussed later, the stability of the

pentaquark considered here seems irrelevant to the diquark correlation between two light

quarks, but rather sensitive to the cc̄ correlations. In this sense, we may justify to treat the

common variational parameter b.

W ith the simplifications stated above, we assume the spatial part of the wave function

as

φ(R , r 1, r 2, r 3) =
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3
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which is normalized by integrating over the space. The values of a and b will be determined

by variational calculation. Note that all the orbital angular momenta are zero.
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TABLE VI . Expectation values for octet-type configuration (Pcs8 , P0
cs8 , P⇤
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FIG. 4. The diagrams for the obtained values of the variational parameters a (red thick arrow)

and b (thin black arrow) in the model B for Pcs8 , P0
cs8 and P⇤

cs8 (cf. Table V).

Pcs8

Pcs8’

Pcs8
*

Mass

FIG. 5. The splitting of mass spectrum of Pcs8 , P0
cs8 and P⇤

cs8 . The left black blob and arrows in

the circle indicate the cc̄ spin 0 and 1, respectively, and the right gray arrows do the spin 1/2 of

uds component.
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FIG. 1. The coordinate of ~R and ~r i ( i = 1, 2, 3) .

The spatial part φ depends on the variables R and r i ( i = 1, 2, 3) (Fig. 1). Here R is the

position vector from the c quark to the c̄ quark, and r i are the vectors for light quarks

i = 1, 2, 3. W e assume for simplicity that the internal angular momenta are S-wave because

we focus on the ground states.

I t is known that the Jacobi coordinates are very useful to solve many-body problems in

general. In the present discussion, however, we simplify the situation in the following way.

W e assume that the c and c̄ quarks are sufficiently heavy, and that the midpoint of c and

c̄, i.e. R / 2, represents the center-of-mass of cc̄qqq system. In this limiting case, we can

assign the original points of the vectors r i to be the center-of-mass of the system. W e notice

that in this treatment the motion of the cc̄ (or uds) cluster to the total system is neglected.

Nevertheless, we expect that this would be a reasonable approximation as long as the mass

of charm quark is much larger than those of light quarks.

As for the spatial wave function, we here consider only compact systems of five quarks

and assume the Gaussian type with extension parameters a for R and b for r i . W e use

the common value b for r 1 , r 2, r 3, because the wave function of the light quarks will

be distributed uniformly in space. In fact, as will be discussed later, the stability of the

pentaquark considered here seems irrelevant to the diquark correlation between two light

quarks, but rather sensitive to the cc̄ correlations. In this sense, we may justify to treat the

common variational parameter b.

W ith the simplifications stated above, we assume the spatial part of the wave function

as

φ(R , r 1, r 2, r 3) =
1
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3
4
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, (7)

which is normalized by integrating over the space. The values of a and b will be determined

by variational calculation. Note that all the orbital angular momenta are zero.
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we focus on the ground states.
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assign the original points of the vectors r i to be the center-of-mass of the system. W e notice

that in this treatment the motion of the cc̄ (or uds) cluster to the total system is neglected.

Nevertheless, we expect that this would be a reasonable approximation as long as the mass

of charm quark is much larger than those of light quarks.

As for the spatial wave function, we here consider only compact systems of five quarks

and assume the Gaussian type with extension parameters a for R and b for r i . W e use

the common value b for r 1 , r 2, r 3, because the wave function of the light quarks will

be distributed uniformly in space. In fact, as will be discussed later, the stability of the

pentaquark considered here seems irrelevant to the diquark correlation between two light

quarks, but rather sensitive to the cc̄ correlations. In this sense, we may justify to treat the
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which is normalized by integrating over the space. The values of a and b will be determined

by variational calculation. Note that all the orbital angular momenta are zero.
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FIG. 1. The coordinate of ~R and ~r i ( i = 1, 2, 3) .

The spatial part φ depends on the variables R and r i ( i = 1, 2, 3) (Fig. 1). Here R is the

position vector from the c quark to the c̄ quark, and r i are the vectors for light quarks

i = 1, 2, 3. W e assume for simplicity that the internal angular momenta are S-wave because

we focus on the ground states.

I t is known that the Jacobi coordinates are very useful to solve many-body problems in

general. In the present discussion, however, we simplify the situation in the following way.

W e assume that the c and c̄ quarks are sufficiently heavy, and that the midpoint of c and

c̄, i.e. R / 2, represents the center-of-mass of cc̄qqq system. In this limiting case, we can

assign the original points of the vectors r i to be the center-of-mass of the system. W e notice

that in this treatment the motion of the cc̄ (or uds) cluster to the total system is neglected.

Nevertheless, we expect that this would be a reasonable approximation as long as the mass

of charm quark is much larger than those of light quarks.

As for the spatial wave function, we here consider only compact systems of five quarks

and assume the Gaussian type with extension parameters a for R and b for r i . W e use

the common value b for r 1 , r 2, r 3, because the wave function of the light quarks will

be distributed uniformly in space. In fact, as will be discussed later, the stability of the

pentaquark considered here seems irrelevant to the diquark correlation between two light

quarks, but rather sensitive to the cc̄ correlations. In this sense, we may justify to treat the

common variational parameter b.

W ith the simplifications stated above, we assume the spatial part of the wave function

as

φ(R , r 1, r 2, r 3) =
1

(2⇡a2)
3
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which is normalized by integrating over the space. The values of a and b will be determined

by variational calculation. Note that all the orbital angular momenta are zero.
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FIG. 1. The coordinate of ~R and ~r i ( i = 1, 2, 3) .

The spatial part φ depends on the variables R and r i ( i = 1, 2, 3) (Fig. 1). Here R is the

position vector from the c quark to the c̄ quark, and r i are the vectors for light quarks

i = 1, 2, 3. W e assume for simplicity that the internal angular momenta are S-wave because

we focus on the ground states.

I t is known that the Jacobi coordinates are very useful to solve many-body problems in

general. In the present discussion, however, we simplify the situation in the following way.

W e assume that the c and c̄ quarks are sufficiently heavy, and that the midpoint of c and

c̄, i.e. R / 2, represents the center-of-mass of cc̄qqq system. In this limiting case, we can

assign the original points of the vectors r i to be the center-of-mass of the system. W e notice

that in this treatment the motion of the cc̄ (or uds) cluster to the total system is neglected.

Nevertheless, we expect that this would be a reasonable approximation as long as the mass

of charm quark is much larger than those of light quarks.

As for the spatial wave function, we here consider only compact systems of five quarks

and assume the Gaussian type with extension parameters a for R and b for r i . W e use

the common value b for r 1 , r 2, r 3, because the wave function of the light quarks will

be distributed uniformly in space. In fact, as will be discussed later, the stability of the

pentaquark considered here seems irrelevant to the diquark correlation between two light

quarks, but rather sensitive to the cc̄ correlations. In this sense, we may justify to treat the

common variational parameter b.

W ith the simplifications stated above, we assume the spatial part of the wave function

as

φ(R , r 1, r 2, r 3) =
1

(2⇡a2)
3
4

1

(⇡b2)
9
4

exp

✓

−
|R |2

4a2
−

|r 1|
2 + |r 2|

2 + |r 3|
2

2b2

◆

, (7)

which is normalized by integrating over the space. The values of a and b will be determined

by variational calculation. Note that all the orbital angular momenta are zero.
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Hadronic molecule model:

J-J W. et al., PRL105, 232001 (2010)
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3. Heavy exotic hadrons -X, Y, Z hadrons-
LHCb, Sci. Bull. 66 (2021) 1278

Pcs(4459)
two peaks？
(→next page)

𝐵− → 𝐽/𝜓Λ ҧ𝑝
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3. Heavy exotic hadrons -X, Y, Z hadrons-
LHCb, Sci. Bull. 66 (2021) 1278

𝐵− → 𝐽/𝜓Λ ҧ𝑝

Pcs(4459)

Pcs(4455)

Pcs(4468)

two peaks？

cannot be distinguished statistically…

𝑀 = 4454.9 ± 2.7 MeV
Γ = 7.5 ± 9.7 MeV

𝑀 = 4467.8 ± 3.7 MeV
Γ = 5.2 ± 5.3 MeV

𝑀 = 4458.8 ± 2.9 MeV
Γ = 17.3 ± 6.5 MeV
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3. Heavy exotic hadrons -X, Y, Z hadrons-

𝐵− → 𝐽/𝜓Λ ҧ𝑝

https://indico.cern.ch/event/1176505/attachments/2475130/4248283/CERN%20seminar_LHCb.pdf

Elisabetta Spadaro Norella    &    Chen Chen CERN Seminar, July 5, 2022

B
-
 ‐ J/ψΛp decays

14

Branching ratio: [1]

LHCb-PAPER-2022-031

[1]PDG: Phys. Rev. D 98, 030001

Multibody decays of B meson

‐ good invariant mass resolution 

‐ high signal purity

‐  good place to search for narrow resonances 

‐  Exotic states

 
           

‐  search for pentaquarks in J/ψΛ and J/ψp‐

Elisabetta Spadaro Norella    &    Chen Chen CERN Seminar, July 5, 2022

Amplitude contributions: 

- NR(p‐Λ) 

- NR(p‐J/ψ) 

- P
ψs

(J/ψΛ) 

M odel  w i th  J/ψΛ reson an ce

22

Fit results:

‐  Spin-parity: 

     J = ½  determined

     P = -1 favored, ½+ rejected @90% CL 

Λ

From Wilks’ theorem: 

significance > 10 σ

preliminary preliminary

preliminary preliminary

Elisabetta Spadaro Norella    &    Chen Chen CERN Seminar, July 5, 2022

Amplitude contributions: 

- NR(p‐Λ) 

- NR(p‐J/ψ) 

- P
ψs

(J/ψΛ) 

M odel  w i th  J/ψΛ reson an ce

22

Fit results:

‐  Spin-parity: 

     J = ½  determined

     P = -1 favored, ½+ rejected @90% CL 

Λ

From Wilks’ theorem: 

significance > 10 σ

preliminary preliminary

preliminary preliminary

spin: 𝐽 = 1/2
parity: P = −1 favoreed

Pcs(4338) JP=1/2-

LHCb-PAPER-2022-031 
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FIG. 1. The coordinate of ~R and ~r i ( i = 1, 2, 3) .

The spatial part φ depends on the variables R and r i ( i = 1, 2, 3) (Fig. 1). Here R is the

position vector from the c quark to the c̄ quark, and r i are the vectors for light quarks

i = 1, 2, 3. W e assume for simplicity that the internal angular momenta are S-wave because

we focus on the ground states.

I t is known that the Jacobi coordinates are very useful to solve many-body problems in

general. In the present discussion, however, we simplify the situation in the following way.

W e assume that the c and c̄ quarks are sufficiently heavy, and that the midpoint of c and

c̄, i.e. R / 2, represents the center-of-mass of cc̄qqq system. In this limiting case, we can

assign the original points of the vectors r i to be the center-of-mass of the system. W e notice

that in this treatment the motion of the cc̄ (or uds) cluster to the total system is neglected.

Nevertheless, we expect that this would be a reasonable approximation as long as the mass

of charm quark is much larger than those of light quarks.

As for the spatial wave function, we here consider only compact systems of five quarks

and assume the Gaussian type with extension parameters a for R and b for r i . W e use

the common value b for r 1 , r 2, r 3, because the wave function of the light quarks will

be distributed uniformly in space. In fact, as will be discussed later, the stability of the

pentaquark considered here seems irrelevant to the diquark correlation between two light

quarks, but rather sensitive to the cc̄ correlations. In this sense, we may justify to treat the

common variational parameter b.

W ith the simplifications stated above, we assume the spatial part of the wave function

as

φ(R , r 1, r 2, r 3) =
1

(2⇡a2)
3
4

1

(⇡b2)
9
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✓

−
|R |2

4a2
−
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2

2b2
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, (7)

which is normalized by integrating over the space. The values of a and b will be determined

by variational calculation. Note that all the orbital angular momenta are zero.
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Compact quark model:

S. G. Yuan et al., Eur. Phys. J A48 61 (2012)

Hadronic molecule model:

J-J W. et al., PRL105, 232001 (2010)

PRC84, 015202 (2011)
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It seems consistent partially with our prediction.

Pcs(4459)
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Giachino, Hosaka, Santopinto, Takeuchi, Takizawa, 

Yamaguchi, 2209.10413 [hpe-ph]

Hadronic molecule + quark core model

3

In Fig. 2, in addition to that state, we find six
more states with various spin and parity J P =
1/ 2− , 3/ 2− , 5/ 2− . A l l of these are molecular states of
the near-threshold particles. By increasing the F pa-
rameter, it is possible to lower the two predicted states
located only slightly below the ⌅ cD̄⇤ threshold and a
better agreement with Pcs(4455) and Pcs(4468) experi-
mental masses is achieved. Numerical values of the ob-
tained masses and widths for the above two cases are
summarized in Table 2 in the supplementary material.
W hat is important is that our model predicts two states
as J P = 1/ 2− and 3/ 2− molecules of ⌅ c(J = 1/ 2) and
D̄⇤(J = 1) in the S-wave, supporting the two-peak inter-
pretation of the experimental analysis by LHCb [10]. W e
suggest conducting a higher statistical data analysis in
order to improve the statistical significance of those two
states.

FIG . 2: Comparison between experimental masses of
Pcs and theoretical predictions of our model when

F = 27 is employed. The correspondence between the
theoretical predictions and experimental data is denoted

with arrows.

The nature of these states that appear near threshold
regions depends considerably on the attraction strength.
They may be either weakly bound or virtual states.
M athematically, the di↵erence lies in the location of
their poles; bound states are on the fi rst R iemann sheet,
while virtual states are on the second R iemann sheet.
W hichever the case, the production rates of these states
are amplified near the thresholds; from the experimen-
tal point of view this near-threshold amplification is a
physically important feature.

In addition to the above comparison with data, the
present model contains important physics. (1) The cou-
pling to the compact five-quark components is e↵ectively
expressed as a short-range attraction in the hadronic

molecules. I t is noticeable that such an interaction plays
a dominant role in generating bound states. (2) The ten-
sor force of the pion exchange causes SD-wave channel-
couplings, which provides additional attraction. M ore
interestingly, it controls decay widths, the inverse of the
life time. W ithout the tensor force, the decay width of,
for instance, ⌅0

cD̄⇤ (3/ 2− ) and ⌅⇤
c D̄⇤ (5/ 2− ) molecules

becomes smaller by one order of magnitude.
In hadronic systems, the above features are character-

istic of those containing both heavy and light quarks,
and hence are a result of the cooperation of chiral and
heavy quark symmetries with colorful and colorless forces
of the strong interaction, QCD . These conditions have
confi rmed the conjecture regarding the rich structure of
hadronic molecules near the threshold, which was made
almost half century ago [1–3].

T he molecular structure near threshold region is a uni-
versal phenomenon of quantum systems that may appear
in various matter hierarchies; quarks, hadrons (nuclei) ,
atoms and molecules. Therefore, we expect to see inter-
disciplinary opportunities for various research activities
to implement and discuss.

SU P P L E M E N TA R Y M A T E R I A L

The coupled-channel Hamiltonian for meson-baryon
and five-quark channels is written in the form of block
matrix as [28, 29]

H =

✓
H M B V

V † H 5q

◆

(1)

where H M B stands for meson-baryon (M B ) channels,
H 5q for five-quark (5q) channels, and V, V † their cou-
plings. These are matrices whose dimensions are fixed
by the number of base states (channels) of the meson-
baryon and five-quark states. Explicitly, they are

H M B
i j =

0

@
K 1 + V m

11 V m
12 · · ·

V m
21 K 2 + V m

22 · · ·

· · · · · · · · ·

1

A

H
5q
↵ β =

0

@
M 1 0 · · ·

0 M 2 · · ·

· · · · · · · · ·

1

A (2)

and

Vi ↵ = f hi |↵ i =

0

@
V11 V12 · · ·

V21 V22 · · ·

· · · · · · · · ·

1

A . (3)

In these equations, the label m indicates the kind of
mesons (either pion or kaon) exchanged between a meson
and a baryon, K i the kinetic energy of the i-th meson-
baryon pair and M ↵ the masses of the ↵-th five-quark
channel. The couplings of the meson-baryon and five-
quark channels Vi ↵ are expressed by the products of

Pcs(4459)
JP=??

JP=1/2-

It seems consistent with experiments.
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the colorful world!
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FIG. 1. The coordinate of ~R and ~r i ( i = 1, 2, 3) .

The spatial part φ depends on the variables R and r i ( i = 1, 2, 3) (Fig. 1). Here R is the

position vector from the c quark to the c̄ quark, and r i are the vectors for light quarks

i = 1, 2, 3. W e assume for simplicity that the internal angular momenta are S-wave because

we focus on the ground states.

I t is known that the Jacobi coordinates are very useful to solve many-body problems in

general. In the present discussion, however, we simplify the situation in the following way.

W e assume that the c and c̄ quarks are sufficiently heavy, and that the midpoint of c and

c̄, i.e. R / 2, represents the center-of-mass of cc̄qqq system. In this limiting case, we can

assign the original points of the vectors r i to be the center-of-mass of the system. W e notice

that in this treatment the motion of the cc̄ (or uds) cluster to the total system is neglected.

Nevertheless, we expect that this would be a reasonable approximation as long as the mass

of charm quark is much larger than those of light quarks.

As for the spatial wave function, we here consider only compact systems of five quarks

and assume the Gaussian type with extension parameters a for R and b for r i . W e use

the common value b for r 1 , r 2, r 3, because the wave function of the light quarks will

be distributed uniformly in space. In fact, as will be discussed later, the stability of the

pentaquark considered here seems irrelevant to the diquark correlation between two light

quarks, but rather sensitive to the cc̄ correlations. In this sense, we may justify to treat the

common variational parameter b.

W ith the simplifications stated above, we assume the spatial part of the wave function

as

φ(R , r 1, r 2, r 3) =
1

(2⇡a2)
3
4

1

(⇡b2)
9
4

exp

✓

−
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, (7)

which is normalized by integrating over the space. The values of a and b will be determined

by variational calculation. Note that all the orbital angular momenta are zero.
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TABLE 1. SU (3) representations relevant for both

color and flavor. In the weight diagrams isospin mul-

tiplets (with the same baryon number, spin, and par-

ity) shown in the same color can mix when SU (3) f
symmetry is broken. Multiplets in black do not mix.

SU (3)c Irrep Cc Weight Diagram

3 f ↔ 4
3

6 f ↔
10
3

15 f ↔
16
3

15′f ↔
28
3

states mix even in the presence of SU (3) f violation because the multiplets with the same

isospin and hypercharge have different total angular momentum.

In the colormagnetic model the colorspin interaction matrix elements (which we call

D following Ref. [15]) are determined by eq. (7),

D(a) ≡D([21](3c, 1)) = −2Mqq

D(b) ≡D([15](3c, 3)) = + 2
3
Mqq.

(8)

As expected, the b diquark is heavier, as assumed in the schematic diquark model.

The phenomenology of these states is well known from the analogs in the charm

sector. They combine with the charm quark to make the lightest positive parity charm

baryons. The flavor hypercharge (Y ) 2/3 state in the 3 f joins the charm quark to make

the spin-1/2 Lc. The Y = −1/3 isodoublet in the 3 f couples to c-quark to make spin-

1/2 Xc states. However the spin-triplet Y = −1/3 isodoublet in the flavor 6 f can also

join the c-quark to make a spin-1/2 Xc state. When the strange quark mass is “turned

on” these two states mix to form the Xc and the X′
c. Note that the a and b diquarks

do mix within the I = 1/2 qqc baryons because the total spin of the states is the same.
This mixing vanishes in the mc→¥ limit which defines color non-singlet spectroscopy.

The Y = 2/3 isovector in the 6 f couples to the c-quark to make the spin-1/2 Sc and the
spin-3/2 S∗

c . The remaining charm baryons are the spin-1/2 and 3/2 Wc and the spin-

TABLE 1. SU (3) representations relevant for both

color and flavor. In the weight diagrams isospin mul-

tiplets (with the same baryon number, spin, and par-

ity) shown in the same color can mix when SU (3) f
symmetry is broken. Multiplets in black do not mix.

SU (3)c Irrep Cc Weight Diagram

3 f ↔ 4
3

6 f ↔
10
3

15 f ↔
16
3

15′f ↔
28
3

states mix even in the presence of SU (3) f violation because the multiplets with the same

isospin and hypercharge have different total angular momentum.
In the colormagnetic model the colorspin interaction matrix elements (which we call

D following Ref. [15]) are determined by eq. (7),

D(a) ≡D([21](3c, 1)) = −2Mqq

D(b) ≡D([15](3c, 3)) = + 2
3Mqq.

(8)

As expected, the b diquark is heavier, as assumed in the schematic diquark model.

The phenomenology of these states is well known from the analogs in the charm
sector. They combine with the charm quark to make the lightest positive parity charm

baryons. The flavor hypercharge (Y ) 2/3 state in the 3 f joins the charm quark to make

the spin-1/2 Lc. The Y = −1/3 isodoublet in the 3 f couples to c-quark to make spin-

1/2 Xc states. However the spin-triplet Y = −1/3 isodoublet in the flavor 6 f can also

join the c-quark to make a spin-1/2 Xc state. When the strange quark mass is “turned
on” these two states mix to form the Xc and the X′

c. Note that the a and b diquarks

do mix within the I = 1/2 qqc baryons because the total spin of the states is the same.
This mixing vanishes in the mc→¥ limit which defines color non-singlet spectroscopy.

The Y = 2/3 isovector in the 6 f couples to the c-quark to make the spin-1/2 Sc and the

spin-3/2 S∗
c . The remaining charm baryons are the spin-1/2 and 3/2 Wc and the spin-

J = 0

J = 1

Ex. Λc = [qq]J=0c

Σc
(*) = [qq]J=1c

R.L. Jaffe, Phys. Rev. D72, 074508 (2005)

Exotic hadrons: mass spectrum of colorful states

As before, flavor quantum numbers ( 3 f ⊕ 15 f ) have been suppressed.

The spin-1/2 states are linear combinations of the b and g diquark states. Using these
diquark states as the basis states,

[qq[15]q̄][6](3c, 2) = 2
5
|gq̄, (3c, 2)⟩− 3

5
|bq̄, (3c, 2)⟩

[qq[15]q̄][84](3c, 2) = 3
5 |gq̄, (3c, 2)⟩ + 2

5 |bq̄, (3c, 2)⟩
(15)

Color magnetism favors one of the spin-1/2 multiplets (see Table 5). The two spin-1/2

eigenstates are both linear superpositions of |bq̄⟩ and |gq̄⟩:

[qq[15]q̄]D = −2.421 (3c, 2) = −0.582 |gq̄, (3c, 2)⟩ + 0.813 |bq̄, (3c, 2)⟩

[qq[15]q̄]D = 2.754 (3c, 2) = 0.813 |gq̄, (3c, 2)⟩ + 0.582 |bq̄, (3c, 2)⟩
(16)

Again the lightest state has spin-1/2, but it is considerably heavier than the lightest spin-

1/2 multiplet built of a and d diquarks (see eq. (13)).
The schematic diquark

3: The spectrum of [qqq̄]3c states. The first column shows

colormagnetic model splittings. The second gives a sketch of

the ordering of states in the schematic diquark model. SU (3) f
multiplets are labeled by icons of their weight diagrams.

model ignores the g diquark

entirely and therefore yields
only one spin-1/2 multiplet

and one spin-3/2 multi-

plet. Since the b-diquark is

assumed heavier than the

a-diquark, this multiplet
is expected to be heavier

than the [aq̄] state found

in the previous subsection.

Once again the schematic
diquark model mimics the

colormagnetic model at

least as far as the light states
are concerned. As before

the distinction between the

models lies in the diquark

content of the light state:

in the schematic model it is
pure b-diquark, while colormagnetism intermixes the color-sextet g-diquark approxi-

mately 1 : 2 relative to the b-diquark‡‡

The spectrum of [qq]q̄ states in the two models is summarized in Fig. 3. In both models

the lightest multiplet is a degenerate 3 f and 6 f with spin-1/2. The spectra begin to differ
at the next level, although even there the differences are minor.

‡‡ The coefficients in eqs. (13) and (16) are in fact identical. They are numerically close but not equal to

1/3 and 2/3.

Ex. X(5568) = [sud]J=?b

D0, PRL117, 022003 (2016)

TABLE 3. [qqqq]3c States in the Colorspin Basis

SU (6)cs Irrep Spin SU (3) f Irrep D a b g d

[15] 1 15′f
14
3

Mqqqq 0 2
3

1
3

0

[105] 2 15 f 2Mqqqq 0 2
3

0 1
3

[105] 1 15 f
2
3
Mqqqq

1
6

1
2

1
6

1
6

[105] 0 15 f 0 1
4

5
12

1
4

1
12

[105′] 1 6 f − 4
3
Mqqqq

1
4

5
12

1
12

1
4

[210] 1 3 f −10/3Mqqqq
1
3

1
3

0 1
3

[210] 0 3 f −4Mqqqq
5
12

1
4

1
12

1
4

TABLE 4. [qqqq]3c States in a schematic diquark model

Diquark content Spin SU (3) f Irrep “Mass”

aa 0 3 f Mqqqq

ab 1 3 f ⊕ 15 f Mqqqq + DMqqqq

bb 0 ⊕ 2 15 f Mqqqq + 2DMqqqq

bb 1 6 f ⊕ 15
′
f Mqqqq + 2DMqqqq

the Introduction.
The spectrum of [qqqq]3c

2: The spectrum of [qqqq]3c states. The first column shows

colormagnetic model splittings. The second gives a sketch of

the ordering of states in the schematic diquark model. SU (3) f
multiplets are labeled by icons of their weight diagrams.

states in the colormag-

netic model is sketched in

Fig. 2 and compared with

the spectrum obtained the
schematic strongly corre-

lated diquark model. The

ordering of states in the col-
ormagnetic model follows

the simple “Hund’s Rule”

of QCD[5]: Antisymmetric

flavor irreps are favored.

Within a multiplet with
the same flavor irrep, low

spin is favored. The diquark

scheme yields a similar, but
not identical pattern.

The ground state mul-

tiplet is the same in both

approaches, though the col-
ormagnetic scheme allows J = 1 as well as J = 0. In the schematic diquark model a

J = 1 3 f is nearby. If, as suggested in the Introduction, only the lightest multiplet(s) of

[qqqq]3c states are stable against falling apart into the [qqq]q3c continuum, then it will be

∥The totally symmetric colorspin configuration ( ) is excluded because four quarks cannot be
antisymmetrized over three flavors

Ex. DN = qqqqc

No experiment
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3. Heavy exotic hadrons -X, Y, Z hadrons-

More X, Y, Z, ....?

163

I’m so full…



3. Heavy exotic hadrons -X, Y, Z hadrons-

too many ψ’?

Y(4360) & Y(4660)

Some confusions...

B. Aubert et al. [BaBar],

Phys. Rev. Lett. 98, 212001 (2007)

X. L. Wang et al. [Belle],

Phys. Rev. Lett. 99, 142002 (2007)

Single peak? Double peaks?

mass:

width: (relatively broad)

mass: &

J. P. Lees et al. [BaBar],

Phys. Rev. D D89, 111103 (2014) confirmed double peaks.

less 
sta

tist
ics...
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Cf. Y(4260)
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Zc(3885)+, Zc(4020)+, Zc(4025)+

Other charged charmonium?
M. Ablikim et al. [BESSIII],  Phys. Rev. Lett. 110, 252001 (2013)

Zc(3885)+Zc(3885)+

M. Ablikim et al. [BESIII], Phys. Rev. Lett. 111, 242001 (2013)

Zc(4020)+

M. Ablikim et al. [BESIII], Phys. Rev. Lett. 112, 132001 (2014)

Zc(4025)+

165

Cf. Zc(3900)+



ccss

X(4140), X(4274), X(4500), X(4700)

LHCb, Phys. Rev. Lett. 118, 022003 (2017)

b

J/ψ-φ scattering in lattice QCD
S. Ozaki, S. Sasaki, PRD87, 014506 (2013)

Quartet state?

3. Heavy exotic hadrons -X, Y, Z hadrons-
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No bound/resonance states
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F IG . 2: T he combined background for the m (B 0
s π

±) distri-
bution described in the text and the fi t to that distribution
with the ∆ R < 0.3 cone cut and without the cone cut.

to zero. This empirical function gives a good description
of the combined backgrounds, as seen in Fig. 2.

The B 0
sπ

± invariant mass spectrum is shown in
F ig. 3(a) with the cone cut and (b) without the cone cut.
An enhancement is seen near 5.57 GeV/c2 . To extract
the signal parameters, the distributions are fi tted with a
function F [Eq. (2)] that includes two terms: the back-
ground term Fb gr (m B π) with fixed shape parameters as
in F ig. 2 and the signal term Fsi g (m B π , M X , ΓX ) , mod-
eled by a relativistic Breit-W igner function convolved
with a Gaussian detector resolution function and with
the mass-dependent efficiency of the cone cut [13]. Here
M X and ΓX are the mass and the natural width of
the resonance. The Gaussian width parameter σres =
3.8 M eV/c2 is taken from simulations.

The fi t function has the form

F = f si g Fsi g (m B π , M X , ΓX ) + f b gr Fb gr (m B π) , (2)

where f si g and f b gr are normalization factors.
W e use the Breit-W igner parametrization appropriate

for an S-wave two-body decay near threshold:

B W (m B π) ∝
M 2

X Γ(m B π)

(M 2
X − m 2

B π)2 + M 2
X Γ

2 (m B π)
. (3)

The mass-dependent width Γ(m B π) = ΓX · (q1/q0 ) is
proportional to the natural width ΓX , where q1 and q0

are three-vector momenta of the B 0
s meson in the rest

frame of the B 0
sπ

± system at the invariant mass equal to
m B π and M X , respectively.

I n the fi t shown in F ig. 3(a), the normalization pa-
rameters f si g and f b gr and the Breit-W igner parame-
ters M X and ΓX are allowed to vary. The fi t yields
the mass and width of M X = 5567.8 ±2.9 M eV/c2 ,
ΓX = 21.9±6.4 M eV/c2 , and the number of signal events
of N = 133 ±31. As the measured width is significantly
larger than the experimental mass resolution, we infer
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F IG . 3: T he m (B 0
s π

±) distribution together with the back-
ground distribution and the fi t results (a) after applying the
∆ R < 0.3 cone cut and (b) without the cone cut.

that X (5568) → B 0
sπ

± is a strong decay. The statistical

significance of the signal is defined as −2 ln(L 0/L m ax ) ,
where L m ax and L 0 are likelihood values at the best-fi t
signal yield and the signal yield fixed to zero. The ob-
tained local statistical significance is 6.6σ for the given
mass and width values. W ith the look-elsewhere effect
[14] taken into account, the global statistical significance
is 6.1σ. T he search window is taken as the interval be-
tween the B 0

sπ
± threshold (5506 M eV/c2 ) and the B 0

d K ±

mass threshold (5774 M eV/c2 ) .
W e also extract the signal from the m (B 0

sπ
±) distribu-

tion without the ∆ R cone cut, fixing the mass and nat-
ural width of the signal and the background mass shape
to their default values. W e see a tendency for data to

X(5568) D0, PRL117, 022003 (2016)

sbud
All different flavors!

3. Heavy exotic hadrons -X, Y, Z hadrons-
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3. Heavy exotic hadrons -X, Y, Z hadrons-

https://indico.cern.ch/event/1176505/attachments/2475130/4248283/CERN%20seminar_LHCb.pdf

Talk file by E. S. Norella and C. Chen, CERN Seminar 5th July, 2022
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Double
Charm
Tetraquark

3. Heavy exotic hadrons -X, Y, Z hadrons-
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Are exotic hadrons unstable in strong interaction？

Not necessarily! Some can be stable!



3. Heavy exotic hadrons -X, Y, Z hadrons-

Tcc
Double charm tetraquark

Zc

ccud
Hidden charm

𝐶 = 0

Tcc

ccud
Double charm

|𝐶| = 2

172



3. Heavy exotic hadrons -X, Y, Z hadrons-

Tcc
Double charm tetraquark

c

c

d

u
I(JP)=0(1+)

Gluon exchange force induces color-spin interaction

- Color confinement

- Diquark

c dcu +
strong decay？

(fall-apart)

Tcc can be stable!

J.P. Ader, J.M. Richard and P. Taxil,

Phys. Rev. D25, 2370 (1982)

173
cc pair 1/mC

2 more suppressed (3c, 3S1)

strong ud

attraction

1/mC
0 dominant attraction (3c, I=0, 1S0)ud pair

cu pair 1/mC
suppressed



D+D* threshold 3880 MeV

3. Heavy exotic hadrons -X, Y, Z hadrons-

Tcc
Double charm tetraquark

c dcu +

D D*

mass

J.P. Ader, J.M. Richard and P. Taxil,

Phys. Rev. D25, 2370 (1982)

c

c

d

u
I(JP)=0(1+)

Attractive ud diquark (S=0)
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D+D* threshold 3880 MeV

3. Heavy exotic hadrons -X, Y, Z hadrons-

Tcc
Double charm tetraquark

c dcu +

D D*

S.-H. Lee, S. Yasui, Eur. Phys. J. C64,283 (2009)

S.-H. Lee, S. Yasui, W. Liu, C.-M. Ko, Eur. Phys. J. C54, 259 (2008)

mass

264 S.H. Lee et al.: Charmed exotics in heavy ion collisions

Tab le 8. Possible decay modes of Tcc. In the bottom row, we would observe the corre-
lations (K + π− )(K + π− )π− and (K + π+ π+ π− )(K + π− )π− in the final states. See the
text for details

Threshold Decay mode Lifetime

M Tcc
> M D ∗ + M D D ∗− D̄ 0 hadronic decay

2M D + M π < M Tcc
< M D ∗ + M D D̄ 0D̄ 0π− hadronic decay

M Tcc
< 2M D + M π D ∗− K + π− , D ∗−K + π+ π−π− 0.41× 10− 12 s

Tab le 9. Possible decay modes of Θcs

Threshold Decay mode Lifetime

M Θcs
> M N + M D s

pD −
s hadronic decay

M Λ + M D < M Θcs
< M N + M D s

ΛD̄ 0 hadronic decay

ΛD − hadronic decay

M Θcs
< M Λ + M D ΛK + π− , ΛK + π+ π−π− 0.41× 10− 12 s

ΛK + π−π− 1.0× 10− 12 s

via a strong process.1 For the Tcc below the threshold of
D ∗D and above DDπ, the decay channel to D ∗− D̄ 0 is en-
ergetically forbidden, but the D ∗− component in Tcc can
decay through a strong process, leading to the final de-
cay mode D̄ 0D̄ 0π− . On the other hand, when Tcc is be-
low the threshold of DDπ, the decay channel of D ∗− is
closed and only the weak decay of the D̄ 0 component in
Tcc is allowed via D̄ 0 → K + π− or K + π+ π−π− . There-
fore, Tcc would bedetected by thedecay modesD ∗−K + π−

and D ∗−K + π+ π−π− . The last two decay patterns would
most likely occur since the binding energy of Tcc is esti-
mated to be about 80 MeV as shown previously, which is
sufficiently larger than the mass difference (about 6 MeV)
between D ∗− and D̄ 0π− . Below the threshold of DDπ, it
may also be interesting to see the decay of D ∗− compon-
ent in Tcc. Considering that the D ∗− component contains
a quantum number of D̄ 0π− , and D̄ 0 decays into K + π−

and K + π+ π−π− , we may observe the D̄ 0K + π+ π− and
D̄ 0K + π+ π+ π−π− decays.

Among the weak decays below the threshold of DDπ,
the decay of the D̄ 0 component in Tcc can be distinguished
from that of theD ∗− component. Theformer hasthecorre-
lations(K + π− )(K + π− )π− and (K + π+ π+ π− )(K + π− )π− ,
and the latter hasthecorrelations(K + π− )(K + π+ π− ) and
(K + π− )(K + π+ π−π−π− ), where brackets denote corre-
lated particles. However, the D̄ 0D̄ 0π− state, which would
appear in Tcc in the latter process, contains six quarks,
hence further analysis is needed to discuss its stability.

The pentaquark Θcs also has interesting decay pat-
terns. As can be seen in Table 7, the mass of Θcs could
be slightly above theΛD̄ 0 threshold, in which case its life-
timewill beshorter than that of D s . Then theonly possible
way to look for it is from the hadronic decay to Λ+ D̄ 0

1 The decay to the D̄ ∗0D − mode may not be a good signal in
experiments, since the D̄ ∗0 decays to D̄ 0π0 instead to D + π−

and D −π+ , which are energetically forbidden due to the mass
difference.

final states. SinceALICE will beableto reconstruct the D̄ 0

through its hadronic decay, it will be an excellent oppor-
tunity to search for Θcs . Considering more general cases,
and assuming Θcs to be above the threshold of N D s , the
Θcs can decay into pD −

s and ΛD̄ 0 or ΛD − via the strong
process. Although theΣD channel is also a possible decay
mode, it ismoredifficult to detect ascompared to N D s and
ΛD . W hen the mass of Θcs is below the N D s and above
the ΛD threshold, it decays only to ΛD̄ 0 or ΛD − . On the
other hand, below the threshold of ΛD , the hadronic de-
cay channels are closed and only weak decays are possible.
In this case, the lifetime of Θcs will depend on the lifetime
of the different components inside the Θcs , such as the Λ,
D̄ 0 and D − , whose lifetimes are respectively 2.6× 10− 10,
0.41× 10− 12 and 1.0× 10− 12 s. Therefore, once the Θcs is
formed as a deeply bound state, it will decay by the weak
process of D̄ 0 or D − . Consequently, possible final states
would beΛK + π− , ΛK + π+ π−π− and ΛK + π−π− .

Since the lifetimes of Tcc and Θcs are in the order of
10− 12 s, their decaysoccur outside the collision region and
they are thus identifiable by vertex reconstruction. There-
fore, Tcc and Θcs would be identified clearly in experiments
if they exist. We summarize our results on possible decay
modes of Tcc and Θcs in Tables 8 and 9.

Lastly, we comment on the possibility to measure dou-
bly charmed baryons in heavy ion collisions. The doubly
charmed baryon Ξ + +

cc have been observed by the SELEX
Collaboration in the Λ+

c K −π+ and in the pD + K − de-
cay modes with a mass of (3518.7±1.7) MeV [40, 41]. The
same collaboration has also successfully measured Ξ +

cc in
theΛ+

c K −π+ π+ decay modewith a massof 3460MeV [42].
On theother hand, attemptsby theFOCUSCollaboration
in the photoproduction experiment and by the BABAR
Collaboration in e+ e− annihilation experiments [43, 44]
have so far failed to establish the existence of the doubly
charmed baryons. Hence, it is an interesting problem to
search for the doubly charmed baryons in heavy ion colli-
sions. Using the coalescence model, we find that the num-

weak decay:
D→Kπ

J.P. Ader, J.M. Richard and P. Taxil,

Phys. Rev. D25, 2370 (1982)

c

c

d

u
I(JP)=0(1+)

Attractive ud diquark (S=0)
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operator, and (D) the operators as in C supplemented with the tetraquark operators.

Taken from Ref. [492].

⨯
⨯

⨯⨯

⨯

⨯ ⨯

⨯

⨯

⨯⨯⨯
⨯

⨯⨯

⨯

⨯⨯

⨯ ⨯

1970 1980 1990 2000 2010 2020 2030

DD
*

-100

-200

-300

+100

+200

+300

DD
*

-100

-200

-300

+100

+200

+300

Year

M
a
s
s

[M
e

V
]

F igu re 42. Theoretical predictions on the mass of the doubly charmed tetraquark

state ccūd̄ with I (J P ) = 0(1+ ) , with uncertainties (error bars) and without

uncertainties (crosses), calculated based on the compact tetraquark picture through

various quark models [448, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505,

506, 507, 508, 509] (blue) , QCD sum rules [456, 510, 511] (brown), heavy quark

symmetry [461, 462, 463] (green), and others [455, 460] (black) , as well as those

calculated through the hadronic molecular picture [468, 470, 512, 513, 514] (red), the

quark model considering the mixture of the meson-meson and diquark-antidiquark

structures [474, 477, 478] (magenta) , and lattice QCD [493] (cyan) . The two dashed

lines with orange crosses denote the χc1 (3872) (X (3872)) fi rst observed by Belle in

2003 [30] and the T +
cc recently observed by LHCb in 2021 [42, 43].

3. Heavy exotic hadrons -X, Y, Z hadrons-

Tcc
Double charm tetraquark

Summary of theoretical studies (chronological table!)

Recent review:

H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu,

S.-L. Zhu, 2204.02649 [hep-ph]

not bound

bound

bound or not bound？
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Tcc
Double charm tetraquark

~100 MeV above DD*bar threshold

No bound state for Tcc？



D+D* threshold 3880 MeV

c dcu +

D D*

mass

3. Heavy exotic hadrons -X, Y, Z hadrons-

Tcc
Double charm tetraquark

Hadron molecule

DD* interaction

c dcu

D D*

π,ρ,ω, ...

I(JP)=0(1+)

Basis:
(HQS)

HQS & Tensor are important, à la Zb≈BBbar,B*B*bar,B*B*bar.

A.V. Manohar, M. B. Wise,

Nucl. Phys. B399, 17 (1993)
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DD* bound state
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Tcc
Double charm tetraquark

S. Ohkoda, Y. Yamaguchi, S.Y., K. Sudoh, 

A. Hosaka, Phys. Rev. D86, 034019 (2012)

Hadron molecule (I=0)

Hadron molecule (I=1)

Compact multiquark (cc: 3c)

Compact multiquark (cc: 6c
bar)
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D(*)D(*)

π, ρ, ω

Hadronic molecule



3. Heavy exotic hadrons -X, Y, Z hadrons-

Tcc
Double charm tetraquark

Y. Ikeda (HAL Collaboration), PLB729, 85 (2014)

mπ=410 MeV mπ=700 MeV

d
c

u
c

←Attraction!

Lattice QCD simulation
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Tcc
Double charm tetraquark

Y. Ikeda (HAL Collaboration), PLB729, 85 (2014)Lattice QCD simulation

→ However, the attraction is not sufficiently   
strong to make a bound state....
(Due to the large pion mass?)

d
c

u
c

181

Attraction in DD* phase shift

a>0
attractive
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Tcc
Double charm tetraquark

Tcc really exists in our world!
2022
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Tcc
Double charm tetraquark

LHCb, Nature Phys. 18 (2022) 751, Nature Commun. 13 (2022) 3351 

Bound state below D*+D0 threshold,

Very very shallow (keV)!

Anyway, we should explore 

more on Tcc and related states.

Very hot topic ongoing.
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Tcc
Double charm tetraquark

https://indico.desy.de/event/28202/contributions/105627/attachments/67806/84639/EPS-HEP_2021_Polyakov_v5.pdf

Ivan Polyakov (2021)

me!



0. Introduction to exotic hadrons

Y. Ikeda, et al. (HAL Collaboration), PLB729, 85 (2014)：𝑚𝜋 = 410, 700 MeV

Lattice QCD study of Tcc near physical point

Tcc

Y. Lyu, et al. (HAL Collaboration), 2302.04505: 𝑚𝜋 = 135 MeV (near physical point) 

𝑬𝐩𝐨𝐥𝐞 = −𝟒𝟓 𝐤𝐞𝐕 Mass spectrum

d
c

u
c

Cf. LHCb (2022): below D*+D0 threshold

“virtual state”
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Tbb
Double bottom tetraquark

Recent lattice QCD study on Tbb

Meinel, Pflaumer, Wagner,

Phys. Rev. D106, 034507 (2022)

Binding energy ~ 100 MeV？
(deeply bound)

Future experimental studies

Compact multiquark or

extended hadronic molecule?

Recent result by HAL 

Collaboration

83 MeV (2212.00202)



Fully
Charm
Tetraquark

3. Heavy exotic hadrons -X, Y, Z hadrons-
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Xcc(6900)LHCb, Science Bulletin 65 (2020) 1983 

cccc

Assuming no interference… Assuming interference…

Compact state or extended state？

Four-charm resonance



3. Heavy exotic hadrons -X, Y, Z hadrons-
Brief summary of X, Y, Z and Pc

A. Esposito, A. Pilloni, A. D. Plolsa,

Phys. Rep. 668, 1 (2017) 
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3. Heavy exotic hadrons -X, Y, Z hadrons-
Brief summary of X, Y, Z and Pc

A. Esposito, A. Pilloni, A. D. Plolsa,

Phys. Rep. 668, 1 (2017) 

gluonic excitation modes

“string excitation”

c

c
Σ, Π, Δ, Φ, ...
(S, P, D, F, ...)

B(*) B(*)

Hadronic molecule

c c
ud

Compact multiquark

3

D̄ (∗)

Σ∗
cΛb

K

J/ψ

N

(c)

Λb

χcJ

Λ∗

N

N

K

J/ψ

(a)

Λb

D ∗∗
s

Λ∗
c

D̄ (∗)

K

J/ψ

N(b)

FIG . 2: T he loop diagrams as a consequence of F ig. 1 where the ATS and kinematic CUSP can be recognized.

TABLE I : T he χ cJ p thresholds which can be enhanced by the ATS via F ig. 2 (a) .

T hreshold masses [M eV ] χ c0 (1P ) 0+ χ c1 (1P ) 1+ χ c2 (1P ) 2+

p 1/2+ 4353 4449 4494

The interesting property of F ig. 2 (a) and (b) is that given the masses of the involved states located within certain
ranges it will allow the internal states to be on-shell simultaneously. This is different from the kinematic CUSP effects
which generally appear as perturbative structures in the invariant mass spectrum. W hen such a condition is satisfied,
the singularity behavior of the integral will produce strong enhancements at the singular points of which the effects
can be measured in the experiment. In particular, the singular points will mostly locate in the vicinity of the two-body
thresholds but not necessarily to be exactly at the thresholds. I t should be realized that the singular property will
not change even when higher partial waves contribute at the interaction vertices. The reason is because the singular
term will always be kept in the decomposition of the integrand in the Feynman parametrization. In another word,
even though the contribution from the singular term relative to other contributions might be small, its enhancement
at the singular point may not be negligible1 . Nevertheless, in the case of Λb → J/ψK − p there are several thresholds
close to each other. The even small singularity enhancement can build up and produce measurable effects.

Since quite a lot of thresholds can appear in the decays of Fig. 2 and we are still lack of information about the
vertex couplings, we only consider low partial waves and thresholds which are close to the masses of interest and we
discuss separately the properties of those three types of loops in Fig. 2.

F igure 2 (a) is a consequence of F ig. 1 (a) where the rescattering between Λ∗ and charmonium states χcJ is
considered. Note that the mass thresholds for p + χ cJ (J = 0, 1, 2) are close to the peak masses for P +

c (4380) and
P +

c (4450) as listed in Table I . A lso, the S-wave scatterings of pχ c2 → J/ψp can access the quantum numbers of 3/2+

and 5/2+ for the threshold enhancement. The χc1 and p scattering can access the quantum numbers of 1/2+ and
3/2+ . T he χc0p can reach 1/2− and 3/2− via a P wave interaction. I t is interesting to notice that the significant
enhancement to the χcJ p via the ATS would prefer that the mass of Λ∗ to be larger than 2 GeV. From Fig. 2 (a)
of Ref. [1], it shows that the cross section for K − p is smooth but non-zero. Note that as long as the kinematics
approaching the ATS condition, all the cross sections will contribute to the threshold singularity. I n F ig. 3 we show
the structures in the invariant mass of J/ψp via the triangle diagram of F ig. 2 (a) . By varying the relative strengths
of the loop amplitudes, the threshold peaks can match the data. For demonstration we only consider loops of χc1 and
χc2 at this moment.

1 T he detai led discussion about the AT S and their m anifestations in physical processes can be found in R ef. [15] and there are cases that
the AT S involving higher partial wave interactions can sti l l produce significant threshold enhancements [16–21].

Kinematic effect
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3. Heavy exotic hadrons -X, Y, Z hadrons-

Researches continue....

191

TccPcZYX



Fundamental 4 Questions in Hadron Physics

Confined quarks

① Why are quarks confined? ② What is hadron interaction?

Nuclear force

④ What is phase diagram?③ Why is chiral symmetry broken?

3. Heavy exotic hadrons -X, Y, Z hadrons-
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④ What is phase diagram?

① Finite temperature

② Finite density

3. Heavy exotic hadrons -X, Y, Z hadrons-
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What is the hadron production mechanism？
How much are yields of hadrons？

3. Heavy exotic hadrons -X, Y, Z hadrons-

194

More quark number than e+e- and pp  →  Can we see rare events？
(e.x. 20 ccbar from Pb+Pb, collision in LHC)

Production of exotic hadrons?

time-evolution in relativistic heavy ion collisions



STAR, Science 328, 58 (2010)

Observation of “anti-hypernuclei”

Possible to produce quark many-body systems?

3. Heavy exotic hadrons -X, Y, Z hadrons-
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3. Heavy exotic hadrons -X, Y, Z hadrons-
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Cf. ExHIC collaboration: Phys. Rev. C84 (2011) 064910; Prog. Part. Nucl. Phys. 95 (2017) 279 (review)



time

1 fm/c 5 fm/c 7 fm/c 17 fm/c

Hadron

Temperature

Hadron 

phase
Resonance/

Molecule

formation

Free quark gas, First order, Evolution with entropy conservation, ...
L. W. Chen, V. Greco, C. M. Ko, S. H. Lee, W. Liu, PLB 601, 34 (2004)

Critical (hadronization) 

temperature

Freeze-out

temperature

Quark
coalescence

model

Hadron
statistical

model

Hadron
molecule

coalescence

=
？

Production process of exotic hadrons
3. Heavy exotic hadrons -X, Y, Z hadrons-
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𝑇𝐶 𝑇𝐻

𝑇𝐹𝑉𝐶 𝑉𝐻=

Early thermalization

Quark

phase

QGP Inter-hadron 

interaction

nonequilibrium 

as hadron gas

equilibrium as 

hadron gas



weak decay

weak decay

weak decay

weak decay

weak decay

weak decay

weak decay

weak decay

weak decay

Weak decay; some decays
outside the fireball (QGP).

3. Heavy exotic hadrons -X, Y, Z hadrons-
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QGP

Exotic hadrons to be explored

weak decay

What is the 

production yield 

for each hadron？



A. Andronic et al.,

Nucl. Phys. A772, 167 (2006)

Statistical model

3. Heavy exotic hadrons -X, Y, Z hadrons-
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Key point:

Almost equilibrium state (temperature 𝑇𝐻)

Chemical-freezeout (fugacity 𝛾ℎ)

Uniform volume (𝑉𝐻)
Those parameters are determined to reproduce normal hadrons.

Normal hadrons (LHC/ALICE) antimatter (RHIC/STAR)

𝑇𝐻 𝛾ℎ
𝑉𝐻

What’s about exotic hadrons？



V. Greco, C. M. Ko, P. Levai, PRL90, 202302 (2003)

L. W. Chen et al., PLB 601, 34 (2004)

L. W. Chen et al., PRC 76, 014906 (2007)

① distribution function f(xi, pi) for particle i

② Wigner function

Harmonic oscillator wave function (frequency ω) is used. 
The value of ω is determined by normal hadron productions.

Coalescence model

3. Heavy exotic hadrons -X, Y, Z hadrons-
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Key point: convolution of wave functions and 

thermal distributions in phase space (x, p)

𝑥

𝑝

𝑓(𝑥, 𝑝)

𝑓𝑊(𝑥, 𝑝)

What’s about exotic hadrons？

proton/pion ratio
(quark coalescence model )

The same formula can be applied to

quark/hadron-molecule coalescence. 



201

3. Heavy exotic hadrons -X, Y, Z hadrons-

Parameters in statistical/coalescence models

Scenario 1: 𝑇𝐶 = 𝑇𝐻, 𝑉𝐶 = 𝑉𝐻
𝜔: the hadron yields from the coalescence model at 𝑇𝐶

= the hadron yields from the statistical modal at 𝑇𝐻.

Scenario 2: 𝜔: the hadron yields at 𝑇𝐶 to reproduce RHIC/LHC data

𝑇𝐶 and 𝑉𝐶 :the hadron yields from the coalescence model at 𝑇𝐶
= the hadron yields from the statistical modal at 𝑇𝐻.
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3. Heavy exotic hadrons -X, Y, Z hadrons-
numerical results (# per collision)

The yields of exotic hadrons are much  smaller 
than those of normal hadrons (1~10), but not 
negligible.
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3. Heavy exotic hadrons -X, Y, Z hadrons-

1. The yields of the compact multiquark are relatively suppressed.

2. The yields of the hadronic molecules depend on their spatial sizes.

The statistical model v.s. the coalescence model
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3. Heavy exotic hadrons -X, Y, Z hadrons-

X(3872) found in heavy ion collisions!
More produced than pp collisions. 
Note: Loosely bound states are difficult to

be produced in pp collisions.

Many questions

1. Consistent with ExHIC’s prediction？
Supporting the hadronic molecule？

2. How is the 𝑝𝑇 dependence related to

hadron structure？ (𝑝𝑇 trans. momentum)

4. What about 𝜒𝑐1(2𝑃)？
(𝜒𝑐1(2𝑃) is coupled to 𝑋(3872))

5. Other exotics？

Cf. Choi, Lee, PRC101, 024902 (2020)

3. Elliptic flow by X(3872)？
Cf. Zhang et al., PRL126, 012301 (2021)

X(3872)/ψ(2S)



Do you have questions?
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Summary of this lecture

1. Exotic heavy hadrons (X,Y,Z,Pc,Tcc,…) are new  

objects to be studied in hadron physics.

4. Cooperation between experiments and theory

is important (KEK, J-PARC, RHIC, LHC, GSI-FAIR, BES, ...).

2. Hadron spectroscopy provides us with basic

tools to study internal structure of exotic hadrons.

207

3. Heavy hadrons in nuclear systems are important

in understanding the strong interaction.



Keywords in the lecture

Exotic 
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symmetry
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Spin
Bottom
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