チャーム・ボトムの エキゾチックハドロン物理の最近の発展

瀬戸内サマーインスティチュートSSI2023@広島大学, 20-22 Sep. 2023

International Institute for Sustainability with Knotted Chiral Meta Matter/SKCM²

World Premier International Research Center Initiative/WPI at Hiroshima University

✓ Cross-pollinates mathematical knot theory and chirality knowledge across disciplines and scales

✓ Creation of designable artificial knotlike particles that exhibit highly unusual and technologically useful properties

Hadron & nuclear physics group

- PI: Chihiro SASAKI (HU, Uni. of Wroclaw)
- PI: Kenta SHIGAKI (HU)
- coPI: Chiho NONAKA (HU)
- coPI: Muneto NITTA (HU, Keio Uni.)

この講義の目標

1. ハドロン物理学の基本的知識を理解して用語を説明できること

2. ハドロン現象論の基本的なモデルの特徴を理解しうて説明できること

3. エキゾチックハドロンの性質について実験データあるいは理論に基づいて説明できること

日本物理学会創立70周年記念企画

第72巻第9号(通巻823号) 平成29年9月5日発行 付録

뱠

5

kaishi/files/71-09, 70fushiai ndf

https://www.jps.or.jp/books/gakkaishi/files/71-09_70fushigi.pdf

1. イントロダクション

- 1.1 ハドロンの基本的性質
- 1.2 なぜ重いハドロンを研究するのか?

2. 重いクォークのスピン対称性と有効理論

- 2.1 スピン対称性とハドロンスペクトロスコピー
- 2.2 重いクォークの有効理論
- 2.3 重いハドロンの有効理論
- 3. 重いエキゾチックハドロン -ハドロン相互作用の観点から-
- 3.1 なぜエキゾチックハドロンが面白いのか?
- 3.2 チャームメソン: X, Y, Z_c
- 3.3 ボトムメソン: Z_h
- 3.4 チャームペンタクォーク: P_{c} , P_{cs}
- 3.5 ダブルチャームメソン: T_{cc}
- 3.6 フルチャームメソン: X_{cc}
- 3.7 反応論ー重イオン衝突によるエキゾチックハドロン生成ー

1. イントロダクション

- 1.1 ハドロンの基本的性質
- 1.2 なぜ重いハドロンを研究するのか?

2. 重いクォークのスピン対称性と有効理論

- 2.1 スピン対称性とハドロンスペクトロスコピー
- 2.2 重いクォークの有効理論
- 2.3 重いハドロンの有効理論
- 3. 重いエキゾチックハドロン -ハドロン相互作用の観点から-
- 3.1 なぜエキゾチックハドロンが面白いのか?
- 3.2 チャームメソン: X, Y, Z,
- 3.3 ボトムメソン: Z_h
- 3.4 チャームペンタクォーク: P_{cr} , P_{cs}
- 3.5 ダブルチャームメソン: T_{cc}
- 3.6 フルチャームメソン: X_{cc}
- 3.7 反応論ー重イオン衝突によるエキゾチックハドロン生成ー

HiggsTan.com

力とは?

中性子

From nucleus to quark 1 MeV = 10⁶ eV 1 GeV = 10⁹ eV

From nucleus to quark 1 MeV = 10⁶ eV 1 GeV = 10⁹ eV

Introduction Questions How do quarks compose hadrons?

quarks

hadrons

HiggsTan.com

"Law of motion" of quarks and gluons

Quantum Chromodynamics (QCD)

$$\begin{aligned} \mathcal{L}_{\text{QCD}}[\bar{\psi},\psi,A] &= \sum_{f} \bar{\psi}_{f}(i\partial \!\!\!/ - g_{s}A_{\mu} - m_{f})\psi_{f} - \frac{1}{4}F_{a\mu\nu}F^{a\mu\nu} \\ \psi_{f}: \text{quark field (flavor } f) \\ A_{\mu},F_{\mu\nu}: \text{gluon field} \end{aligned}$$

1

Why is hadron physics difficult? Answer: *strong* coupling in low energy

Properties of QCD

1 Color charge (red, blue, green)

Properties of QCD

Color charge (red, blue, green)
 Gluon exchange in inter-quark
 Asymptotic freedom (small coupling at high energy)
 "Structure" of QCD vacuum
 quarks are confined
 chiral symmetry is broken

"Big problem" in strong interaction!!

"Structure" of QCD vacuum?

"Structure" of QCD vacuum?

Many particles in QCD vacuum!

HiggsTan.com

"Non-perturbative vacuum"

(Condensate by interaction is realized by stability of energy.)

"Structure" of QCD vacuum?

Many particles in QCD vacuum!

HiggsTan.com

"Non-perturbative vacuum"

(Condensate by interaction is realized by stability of energy.)

"Structure" of QCD vacuum?

Many particles in QCD vacuum!

HiggsTan.com

"Non-perturbative vacuum"

(Condensate by interaction is realized by stability of energy.)

"Structure" of QCD vacuum?

Many particles in QCD vacuum!

"Vacuum"≠Nothing

in field theory

"Structure" of QCD vacuum?

Many particles in QCD vacuum!

"Most "Vacuum" = Stable

"Structure" of QCD vacuum? What happens in QCD vacuum?

Dynamical symmetry breaking induces zero-mass boson (Nambu-Goldstone (NG) boson)

Origin of light mass of pion (m_T=140 MeV << m_N=940 MeV)

"Structure" of QCD vacuum? What happens in QCD vacuum? Dynamical symmetry breaking induces zero-mass boson (Nambu-Goldstone (NG) boson) Origin of light mass of pion (m_π=140 MeV << m_N=940 MeV). Chiral symmetry breaking

 π exchange interaction is dominant <u>at long distance</u>.

"Structure" of QCD vacuum? What happens in QCD vacuum? Color confinement Can we separate two quarks?

"Structure" of QCD vacuum?

What happens in QCD vacuum?

Quarks are always confined inside hadrons.

Quarks have to make white (colorless) objects.

Main subject in this lecture: Formation mechanism of hadrons by quarks

quarks

hadrons

Mass
Interaction
Many-body problem 48

Quark

52

Quark

Anti-Quark

To be continued.....

How many hadrons were discovered?

	LIGHT UNFLAVORED			STRANGE		CHARMED, STRANGE			57	D	1/2+ ****	A(1232)	3/2+ ****	Σ	1/2+ ***	* =0	1/2+ *	*** A!	$1/2^{+}$	****
	(S = C = B = 0)		$(S = \pm 1, C = B = 0)$		$(C = S = \pm 1)$		1 ⁰ (J [*] ^c)		n	1/2+ ****	$\Delta(1600)$	3/2+ ***	Σ^0	1/2+ ***	* =	1/2+ *	*** A_(259)	$31 - 1/2^{}$	***	
	$P(J^{rc})$		$P(J^{ec})$		l(J ^r)		<i>I</i> (J [⊭])	• n _c (15)	$0^{+}(0^{-}+)$	N(1440)	1/2+ ****	$\Delta(1620)$	1/2 ****	Σ-	1/2+ ***	* <i>E</i> (1530)	3/2+ *	*** 1, (262)	$3/2^{}$	***
·π [±]	1 (0)	· ρ ₃ (1690)	$1^{+}(3^{})$	• K=	$1/2(0^{-})$	$\cdot D_s^{\pm}$	0(0_)	· J/ ψ (1S)	$0^{-}(1^{-})$	N(1520)	3/2 ****	$\Delta(1700)$	3/2 ****	$\Sigma(1385)$	3/2+ ***	* <i>Ξ</i> (1620)	*	A _c (2765	s)+	*
•π ⁰	$1^{-}(0^{-}+)$	• ρ (1700)	$1^+(1^-)$	• K ⁰	((0(0_)	$\cdot D_s^{*\pm}$	0(?f)	$\cdot \mathbf{X}_{c0}(1P)$	$0^{+}(0^{+}^{+})$		****	$\Delta(1750)$	1/2+ *	$\Sigma(1480)$		10.01	*	** A _c (2880)+ 5/2+	***
· ŋ	$0^{+}(0^{-}^{+})$	$a_2(1700)$	$1^{-}(2^{++})$	•		* (2317) ±	0(0+)	$\cdot \mathbf{X}_{c1}(1P)$	$0^+(1^++)$		'***	$\Delta(1900)$	1/2 **	Σ(1560)			<u>'₂</u> *	** A _c (2940)	***
- f ₀ (500)	$0^+(0^++)$	$f_0(1710)$	$0^+(0^++)$			190) [±]	$0(1^+)$	$\cdot h_c(1P)$?·(1			$\Delta(1905)$	5/2+ ****	$\Sigma(158)$			*	** Σ _c (245	5) 1/2+	****
• ρ (770)	$1^{+}(1^{-})$	η (1760)	0+(0	-1	1/2(0	, t	$0(1^{+})$	$X_{c2}(1P)$	0	N(1680)	57-	1 (1910)	1/2+ ****	Σ(1	1	$\Xi(2030)$		$\Sigma_{c}(252)$)) 3/2 ⁺	***
• 66 (782)	0(1)	• π(1800)	1 (0	(892)	1/2(1)	·	$0(2^+)$	$-\eta_{c}(25)$		N(1700)	3/2	(920)	3/2 ***	Σ	/2 ***	<i>Ξ</i> (2120)		$\Sigma_c(280)$	D) _	***
• η(958)	$0^{+}(0^{+}+)$	$T_2(1810)$	2?	$K_1(1270)$	1/2(1 ⁺)	• D ₅	$0(1^{-})$	(23)	\sim	N(1710)	1/2+ **	30)	5/2 ***		3/2 ***	* <i>Ξ</i> (2250)		Ξ_c^+	1/2+	***
• m(900)	$1^{-}(0^{+}^{+})$	A(1839) X(1940)	27	$-K_1(1400)$	$1/2(1^{+})$	D_{s1}^{*}	$0(1^{-})$	• w (3821	'	N(1720)	3/2****	, v	3/2 **		**	$\Xi(2370)$			1/2+	***
• m(1020)	$\frac{1}{1}$	A(1040)	$\frac{1}{1-(1++)}$	- K'(1410) (/*(1420)	1/2(1) $1/2(0\pm)$	$D_{s1}^{+}(.)$)(3))	• X(387	(1 + +)	N(1860)	5/2 **		7/21 ****	<i>b</i>)	3/2 *	<i>Ξ</i> (2500)		2	1/2+	***
 In (1170) 	$0^{-(1+-)}$	• m ₂ (1850)	$0^{-}(3^{-})$	$- K_0(1430)$	$\frac{1}{2}(0^{+})$	D _{SJ} (p(?+)	• X(39	-(1+-)	N(1875)	3/2 ***		5/21 **	50) (70)	1/2 ***	l c=	a/at *		1/2+	***
- b ₁ (1235)	$1^{+}(1^{+}^{-})$	$n_{\rm e}(1870)$	$0^{+}(2^{-}+)$	$K_2(1430)$	1/2(21)		м	- X(3	$(0/2^{-1})$	A(1905)	1/2 **	12	7/2 *	70)	1/2 5/2 ***	* 0(2250)-	3/2 *	264	5) 3/2+	***
- a ₁ (1260)	$1^{-(1++)}$	·π ₀ (1380)	$1^{-}(2^{-}+)$	K (1580)	1/2(0)		-1)	• Xc2	+(2++)	M(1900)	3/2+ ***	Ā	9/2+ **	840)	3/2+ *	Q(2380)	*:	+ 79	D) 1/2	***
$f_2(1270)$	$0^{+}(2^{+}+)$	ρ (1900)	$1^{+}(1^{})$	K(1630)	$1/2(2^2)$	-	1/2(0)	X(.	² (???)	N(1990)	7/2+ **		5/2 *	1880)	1/2+ **	Q(2470)	*:	* 81	5) 3/2 N	***
• $f_1(1285)$	$0^{+}(1^{++})$	$f_2(1910)$	$0^+(2^+)$	K1(1650)			$1/2(0^{-})$	• X(-	$1(?^{?})$	N(2000)	5/2+ **	Δ	7/2+ *	1900)	1/2 *	(,		2.3	<i>1</i>)	***
 η(1295) 	$0^{+}(0^{-}+)$	$a_0(1950)$	$1^{-}(0^{++})$	- K*(1680)		≪B ⁰ ADI	MIXTURE	• ψ(-	0 ⁻ (1)	N(2040)	3/2+ *	$\Delta($	9/2 *	1915)	5/2+ ***	*		5	/) 5)	***
· π(1300)	$1^{(0^+)}$	• $f_2(1950)$	$0^+(2^+)$	$\cdot \kappa_2(1770)$		R0	<i>b</i> -baryon	X(?(?*)	N(2060)	5/2 **	$\Delta($	11/2+ *	1940)	3/2+ *			13))	***
• $a_2(1320)$	$1^{-}(2^{++})$	ρ ₃ (1990)	$1^+(3^{})$	 K[*]₃(1780) 	1/2(3)	· · · ·	KM Ma-	X	$?(?^{*})$	N(2100)	1/2+ *	$\Delta($	13/2 *	1940)	3/2 ***			2	3)	*
 full(1370) 	$0^+(0^++)$	$f_2(2010)$	$0^+(2^+)$	• $K_2(1820)$	$1/2(2^{-})$	trix	divi ivid	· X($0^{+}(2^{+})$	N(2120)	3/2 **	$\Delta($	15/2+ *	2000)	1/2 *				1/2+	***
n(1300)	$\frac{1}{1-(1-+)}$	$f_0(2020)$	$1^{-}(4^{+}^{+})$	K(1830)	1/2(0)	- B*	(1^{-})	· Ψ(*	27(2??)	N(2190)	7/2 ****		1 /ot 1	2030)	7/2+ ***	*		17	0) ⁰ 3/2 ⁺	***
• n(1405)		- £(2040)	$0^+(4^+)$	$K_0^{\bullet}(1950)$	$1/2(0^+)$	• $B_1(5721)$	1+)	X	2(1+)	N(2220)	9/2 ****		1/2 **	2070)	5/2 *					
$f_1(1420)$	$0^{+}(1^{+}+)$	π _e (2100)	$1^{-}(2^{-}+)$	K ₂ (1980)	$1/2(2^{+})$	$-B_1(5721)^{\circ}$	(')	X(4	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	N(2250)	9/2 ****		3/2 **	(080)	3/2 ***					*
• cc(1420)	$0^{-}(1^{-}-)$	fn(2100)	$0^{+}(0^{+}+)$	- K ₄ (2045)	1/2(4+)	B' (5732)	+ 1	X(4)	?(0)	N(2500)	1/2 ** 5/0 **		1/2+ **	100)	1/2 ****				. /a±	al de de de
$f_2(1430)$	$0^{+}(2^{+}+)$	$f_2(2150)$	0 + (2 + +)	$K_2(2250)$	1/2(2)	- D ₂ (5747)	+)	X(42	? [?])	A(2600)	3/Z 11/9 ***	1	1/2 ***	55)	**				1/2 '	***
- a ₀ (1450)	$1^{(0^{+1})}$	ρ(2150)	(T	M3(2320)	$\frac{1}{2}(3^{-1})$	- B ₂ (5747)- B ₂ (5240)-	35	• X(42)	(1)	N(2700)	13/2 **		3/2 ****	0)	**			(591)	$()^{\circ} 1/2$	***
• ρ(1450)	$1^{+}(1^{})$	• q (2170)	(T	K ₅ (2300)	1/2(0)	B (5840)	23	X(4350	? ^{?+})	11(2:00)			1/2+ *		*			6(592)	/)° 3/2 1/2±	***
• ŋ (1475)	0+(0-+)	$f_0(2200)$	6	K(3100)	2?(2??)	- B (597	2(7?)	• $X(4360)$	<u> </u>			ა)	1/2 ***		*			Σ *	3/2	***
$f_0(1500)$	$0^{+}(0^{+}^{+})$	f _J (2220)	0	,((3200))	• (•)	- B.	$(2(?^2))$	• ψ (4415)				.10)	1/2+ ***					=0 =-	1/2+	***
$f_1(1510)$	$0^+(1^++)$	(2225)	or	CHARMED				• $X(4430)^{\pm}$				1820)	5/2+ ****					$= \frac{1}{2}, (593)$	5)- 1/2+	***
$f_2(1525)$	$0^{+}(2^{+})$	η(2225) (2225)	$0^{+}(0)$				STRANGE	· A(4000)	1			A(1830)	5/2 ****					$= \frac{1}{2}(594)$	$51^{0} 3/2^{+}$	***
$f_2(1565)$	aba	(2250)	1'(3)				5 = + 1)	,	55			A(1890)	3/2*****					= [*] (595	5)- 3/2+	***
P(1570) A. (1595)	$0^{-}(1^{+})$	$f_{1}(2300)$	$0^{+}(2^{+})$	· L.		S S	0(0)	• n ₆ (15)	$0^{+}(0^{-}+)$			/(2000)	*					Ω_{b}^{ν}	1/2+	***
• m (1600)	$1^{-}(1^{-}+)$	fs(2330)	$0^{+}(0^{+}+)$	- D*(2007)*	1/2(1) 1/0(1)	- D ₂	$0(1^+)$	· T(15)	$0^{-(1^{-})}$			/(2020)	7/2 · ·							
$a_1(1640)$	$1^{-}(1^{+}+)$	- f ₂₃₄₀	$0^+(2^++)$	· D*(2010)-	1/2(1)	· D ₅₁ (5830)°	$0(1^{+})$	$\cdot \mathbf{x}_{b0}(1P)$	$0^{+}(0^{+}+)$			A(2100)	7/0 ****					$P_{c}(438)$	o)+	*
$f_2(1640)$	$0^{+}(2^{+}+)$	ρ ₅ (2350)	$1^{+}(5^{})$	$D_0^{\pm}(2400)^{\pm}$	$1/2(0^+)$	B [*] -(5850)	2(2 [?])	$\cdot \mathbf{x}_{b1}(1P)$	$0^+(1^{++})$			A(2110)	5/2+ ***					$P_{c}(445)$	D)+	*
• n ₂ (1645)	$0^{+}(2^{-}+)$	$a_6(2450)$	$1^{-1}(6^{++})$	- D (2420) ⁰	1/2(1)	La(0000)	.(.)	• $h_b(1P)$?'(1+-)			A(2325)	3/2 *							
• ω (1650)	0-(1)	$f_6(2510)$	$0^{+}(6^{++})$	$D_1(2420)^{\pm}$	1/2(??)	BOTTOM, C	HARMED	$\cdot \mathbf{X}_{b2}(1P)$	$0^+(2^{++})$			A(2350)	9/2+ ***							
• w s(1670)	0_(3)	OTHER	2 LIGHT	$D_1(2430)^0$	$1/2(1^{+})$	(B = C =	= ±1)	η _b (25)	$0^+(0^+)$			A(2585)	**							
• п ₂ (1670)	$1(2^{+})$	Eurther St	ates	• $D_2^*(2460)^0$	$1/2(2^+)$	B ⁺	0(0_)	$r_{(1D)}$	$0^{-}(1^{-})$. D. I.	<u> </u>	
• \$\$ (1680)	0(1)	Turther of	0105	$D_2^*(2460)^{\pm}$	$1/2(2^+)$	$B_c(2S)^{\pm}$	0(0)	• Y ((2P)	$0^{+}(0^{+}+)$							P	article	e Dato	a Gro	JUP
				D(2550) ⁰	$1/2(?^{f})$			$\cdot \mathbf{x}_{b1}(2P)$	$0^{+}(1^{+}+)$											
				D' (2600)	$1/2(?^{*})$			$h_b(2P)$	$?^{?}(1^{+-})$											
				D*(2640)*	1/2(?)			$\mathbf{x}_{b2}(2P)$	$0^+(2^{++})$											
				D(2740)*	$1/2(f^{+})$ $1/2(f^{-})$			· T(35)	0 (1)											
				D(3000)0	$\frac{1}{2}(3^{-})$ $\frac{1}{2}(2^{2})$			• X _{b1} (3P)	$0^+(1^+)$											
				21(3000)	-/-(- /			• T(45)	0 (1 ⁻)											
								- X(10610)	∸ ⊥'(⊥ ⁺) D 1+(1+)											
								- X(10650)	$\pm 2 + (1 + 1)$									5	8	
								· 7(10860)	$\frac{1}{0}$											
								· T(11020)	0-(1)											

1. Introduction Quarks have flavors

1. Introduction Quarks have flavors

HiggsTan.com

Flavors

HiggsTan.com

weak interaction:

different flavors are interchanged by W and Z bosons (very slow process).

Flavors

HiggsTan.com

weak interaction:

different flavors are interchanged by W and Z bosons (very slow process).

Hadrons made of up, down, strange quarks

 Σ^+

Y (=B+S)

 $|_{z}$

Flavors

HiggsTan.com

weak interaction:

different flavors are interchanged by W and Z bosons (very slow process).

Flavors

HiggsTan.com

weak interaction:

different flavors are interchanged by W and Z bosons (very slow process).

Charm/bottom quarks

 $m_c/m_{u,d} = 200-400$ $m_b/m_{u,d} = 900-1400$

Hadrons made of up, down, strange, charm quarks

What is "exotic"?

How many X, Y, Z are discovered so far?

How can we research exotic hadrons?

GSI-FAIR

BNL-RHIC

81

KEK (Bellel,II)

ELPH (Research Center for Electron Photon Science)

J-PARC (Japan Proton Accelerator Research Complex)

S-Pring 8 (Super Photon ring-8 GeV)

1. Introduction Productions of exotic hadrons in Belle@KEK

Quark-antiquark pairs are created through electron-positron collisions.

q = charm, bottom

S. L. Olsen, T. Skwarnicki, D. Ziemninska, Rev. Mod. Phys. 90, 015003 (2018)

Tables of X, Y, Z discovered so far

1. Introduction

State	M (MeV)	Γ (MeV)	J^{PC}	Process (decay mode)	Experiment	
X(3872)	3871.69 ± 0.17	< 1.2	.2 1++	$B \to K(J/\psi \pi^+ \pi^-)$	Belle (Choi et al., 2003, 2011), BABAR (Aubert et al., 2005c),	
					LHCb (Aaij et al., 2013a, 2015d)	
				$p\bar{p} \rightarrow (J/\psi\pi^+\pi^-) + \cdots$	CDF (Acosta <i>et al.</i> , 2004; Abulencia <i>et al.</i> , 2006; Aaltonen <i>et al.</i> , 2009b),	
					D0 (Abazov et al., 2004)	
				$B \to K(J/\psi \pi^+ \pi^- \pi^0)$	Belle (Abe <i>et al.</i> , 2005), <i>BABAR</i> (del Amo Sanchez <i>et al.</i> , 2010a)	
				$B \rightarrow K(D^0 \bar{D}^0 \pi^0)$	Belle (Gokhroo et al., 2006; Aushev et al., 2010b),	
					BABAR (Aubert et al., 2008c)	
				$B \to K(J/\psi\gamma)$	BABAR (del Amo Sanchez et al., 2010a), Belle (Bhardwaj et al., 2011),	
					LHCb (Aaij et al., 2012a)	
				$B \to K(\psi'\gamma)$	BABAR (Aubert et al., 2009b), Belle (Bhardwaj et al., 2011), LHCb (Aaij et al., 2014a)	
			$pp \rightarrow (J/\psi \pi^+ \pi^-) + \cdots$ LHCb (Aaij <i>et al.</i> , 2012a), CMS (CATLAS (Aaboud <i>et al.</i> , 2017)		LHCb (Aaij <i>et al.</i> , 2012a), CMS (Chatrchyan <i>et al.</i> , 2013a), ATLAS (Aaboud <i>et al.</i> , 2017)	
				$e^+e^- ightarrow \gamma (J/\psi \pi^+\pi^-)$	BESIII (Ablikim et al., 2014d)	
X(3915)	3918.4 ± 1.9	20 ± 5	0^{++}	$B \rightarrow K(I/\mu \omega)$	Belle (Choi et al. 2005)	
A(5)15)	5710.4 ± 1.7	20 ± 5	0	$\mathbf{D} \to \mathbf{R}(\mathbf{J}/\boldsymbol{\psi}\omega)$	BABAR (Aubert <i>et al.</i> , 2008b; del Amo Sanchez <i>et al.</i> , 2010a)	
				$e^+e^- \rightarrow e^+e^-(J/\psi\omega)$	Belle (Uehara et al., 2010), BABAR (Lees et al., 2012c)	
<i>X</i> (3940)	3942^{+9}_{-8}	37^{+27}_{-17}	$0^{-+}(?)$	$e^+e^- \rightarrow J/\psi(D^*\bar{D})$	Belle (Pakhlov et al., 2008)	
	-0	-17		$e^+e^- \rightarrow J/\psi(\cdots)$	Belle (Abe et al., 2007)	
<i>X</i> (4140)	$4146.5_{-5.3}^{+6.4}$	83^{+27}_{-25}	1++	$B \to K(J/\psi \phi)$	CDF (Aaltonen <i>et al.</i> , 2009a), CMS (Chatrchyan <i>et al.</i> , 2014).	
					D0 (Abazov <i>et al.</i> , 2014), LHCb (Aaij <i>et al.</i> , 2017a, 2017d)	
				$p \bar{p} \rightarrow (J/\psi \phi) + \cdots$	D0 (Abazov et al., 2015)	
<i>X</i> (4160)	4156_{-25}^{+29}	139^{+113}_{-65}	$0^{-+}(?)$	$e^+e^- ightarrow J/\psi(D^*\bar{D}^*)$	Belle (Pakhlov <i>et al.</i> , 2008) 85	
<i>Y</i> (4260)	60) See $Y(4220)$ entry 1		1	$e^+e^- ightarrow \gamma (J/\psi \pi^+\pi^-)$	BABAR (Aubert et al., 2005a; Lees et al., 2012b), CLEO (He	

4222 ± 3	48 ± 7	1	$\begin{array}{l} e^{+}e^{-} \to (J/\psi\pi^{+}\pi^{-}) \\ e^{+}e^{-} \to (h_{c}\pi^{+}\pi^{-}) \\ e^{+}e^{-} \to (\chi_{c0}\omega) \\ e^{+}e^{-} \to (J/\psi\eta) \\ e^{+}e^{-} \to (\gamma X(3872)) \\ e^{+}e^{-} \to (\pi^{-}Z_{c}^{+}(3900)) \\ e^{+}e^{-} \to (\pi^{-}Z_{c}^{+}(4020)) \end{array}$	 BESIII (Ablikim et al., 2017c) BESIII (Ablikim et al., 2017a) BESIII (Ablikim et al., 2015g) BESIII (Ablikim et al., 2015c) BESIII (Ablikim et al., 2014d) BESIII (Ablikim et al., 2013a), Belle (Liu et al., 2013) BESIII (Ablikim et al., 2013b)
4273_{-9}^{+19}	56^{+14}_{-16}	1^{++}	$B \to K(J/\psi\phi)$	CDF (Aaltonen <i>et al.</i> , 2017), CMS (Chatrchyan <i>et al.</i> , 2014), LHCb (Aaij <i>et al.</i> , 2017a, 2017d)
$4350.6^{+4.6}_{-5.1}$	$13.3^{+18.4}_{-10.0}$	$(0/2)^{++}$	$e^+e^- ightarrow e^+e^-(J/\psi\phi)$	Belle (Shen et al., 2010)
4341 ± 8	102 ± 9	1	$e^+e^- ightarrow \gamma(\psi'\pi^+\pi^-)$ $e^+e^- ightarrow (J/\psi\pi^+\pi^-)$	<i>BABAR</i> (Aubert <i>et al.</i> , 2007; Lees <i>et al.</i> , 2014), Belle (Wang <i>et al.</i> , 2007, 2015) BESIII (Ablikim <i>et al.</i> , 2017c)
4392 ± 6	140 ± 16	1	$e^+e^- \rightarrow (h_c \pi^+\pi^-)$	BESIII (Ablikim et al., 2017a)
4506^{+16}_{-19}	92^{+30}_{-21}	0^{++}	$B \to K(J/\psi\phi)$	LHCb (Aaij et al., 2017a, 2017d)
4704_{-26}^{+17}	120_{-45}^{+52}	0^{++}	$B \to K(J/\psi \phi)$	LHCb (Aaij et al., 2017a, 2017d)
4643 ± 9	72 ± 11	1	$e^+e^- \rightarrow \gamma(\psi'\pi^+\pi^-)$ $e^+e^- \rightarrow \gamma(\Lambda^+\Lambda^-)$	Belle (Wang <i>et al.</i> , 2007, 2015), <i>BABAR</i> (Aubert <i>et al.</i> , 2007; Lees <i>et al.</i> , 2014) Belle (Pakhlova <i>et al.</i> , 2008)
	4222 ± 3 4273_{-9}^{+19} $4350.6_{-5.1}^{+4.6}$ 4341 ± 8 4392 ± 6 4506_{-19}^{+16} 4704_{-26}^{+17} 4643 ± 9	$\begin{array}{rl} 4222\pm3 & 48\pm7 \\ \\ 4273_{-9}^{\pm19} & 56_{-16}^{\pm14} \\ 4350.6_{-5.1}^{\pm4.6} & 13.3_{-10.0}^{\pm18.4} \\ 4341\pm8 & 102\pm9 \\ \\ 4392\pm6 & 140\pm16 \\ 4506_{-19}^{\pm16} & 92_{-21}^{\pm30} \\ 4704_{-26}^{\pm17} & 120_{-45}^{\pm52} \\ 4643\pm9 & 72\pm11 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

State	M (MeV)	Γ (MeV)	J^{PC}	Process (decay mode)	Experiment
$Z_c^{+,0}(3900)$	3886.6 ± 2.4	28.1 ± 2.6	1+-	$e^+e^- \to \pi^{-,0}(J/\psi\pi^{+,0})$	BESIII (Ablikim <i>et al.</i> , 2013a, 2015f), Belle (Liu <i>et al.</i> , 2013)
				$e^+e^- o \pi^{-,0} (D ar D^*)^{+,0}$	BESIII (Ablikim <i>et al.</i> , 2014b, 2015e)
$Z_c^{+,0}(4020)$	4024.1 ± 1.9	13 ± 5	$1^{+-}(?)$	$e^+e^- ightarrow \pi^{-,0}(h_c\pi^{+,0}) \\ e^+e^- ightarrow \pi^{-,0}(D^*\bar{D}^*)^{+,0}$	BESIII (Ablikim <i>et al.</i> , 2013b, 2014c) BESIII (Ablikim <i>et al.</i> , 2014a, 2015d)
$Z^{+}(4050)$	4051_{-43}^{+24}	82^{+51}_{-55}	$?^{?+}$	$B \to K(\chi_{c1}\pi^+)$	Belle (Mizuk et al., 2008), BABAR (Lees et al., 2012a)
$Z^{+}(4200)$	4196_{-32}^{+35}	370^{+99}_{-149}	1+	$egin{array}{lll} B ightarrow K(J/\psi\pi^+) \ B ightarrow K(\psi'\pi^+) \end{array}$	Belle (Chilikin <i>et al.</i> , 2014) LHCb (Aaij <i>et al.</i> , 2014b)
$Z^{+}(4250)$	4248^{+185}_{-45}	177^{+321}_{-72}	$?^{?+}$	$B \to K(\chi_{c1}\pi^+)$	Belle (Mizuk et al., 2008), BABAR (Lees et al., 2012a)

$Z^{+}(4430)$	4477 ± 20	181 ± 31	1+	$B \to K(\psi' \pi^+)$	Belle (Choi <i>et al.</i> , 2008; Mizuk <i>et al.</i> , 2009), Belle (Chilikin <i>et al.</i> , 2013), LHCb (Aaij <i>et al.</i> , 2014b, 2015b)
				$B \to K(J\psi\pi^+)$	Belle (Chilikin et al., 2014)
$P_{c}^{+}(4380)$	4380 ± 30	205 ± 88	$(\frac{3}{2} / \frac{5}{2})^{\mp}$	$\Lambda^0_b \to K(J/\psi p)$	LHCb (Aaij et al., 2015c)
$P_{c}^{+}(4450)$	4450 ± 3	39 ± 20	$(\frac{5}{2} / \frac{3}{2})^{\pm}$	$\Lambda^0_b \to K(J/\psi p)$	LHCb (Aaij et al., 2015c)
$Y_b(10860)$	$10891.1_{-3.8}^{+3.4}$	$53.7^{+7.2}_{-7.8}$	1	$e^+e^- \rightarrow (\Upsilon(nS)\pi^+\pi^-)$	Belle (Chen et al., 2008; Santel et al., 2016)
$Z_b^{+,0}(10610)$	10607.2 ± 2.0	18.4 ± 2.4	1+-	$Y_b(10860) \to \pi^{-,0}(\Upsilon(nS)\pi^{+,0})$	Belle (Bondar <i>et al.</i> , 2012; Garmash <i>et al.</i> , 2015), Belle (Krokovny <i>et al.</i> , 2013)
				$Y_b(10860) \rightarrow \pi^-(h_b(nP)\pi^+)$	Belle (Bondar et al., 2012)
				$Y_b(10860) \to \pi^-(BB^*)^+$	Belle (Garmash et al., 2016)
$Z_b^+(10650)$	10652.2 ± 1.5	11.5 ± 2.2	1+-	$\begin{array}{l} Y_b(10860) \to \pi^-(\Upsilon(nS)\pi^+) \\ Y_b(10860) \to \pi^-(h_b(nP)\pi^+) \\ Y_b(10860) \to \pi^-(B^*\bar{B}^*)^+ \end{array}$	Belle (Bondar <i>et al.</i> , 2012; Garmash <i>et al.</i> , 2015) Belle (Bondar <i>et al.</i> , 2012) Belle (Garmash <i>et al.</i> , 2016)

and more!

Conventional rule of naming

Hadrons whose properties are different from quark model.

Electrically charged (\pm)

Conventional rule of naming

However, all XYZ are "X" in Particle Data Group.

Brief review of early studies on exotic hadron: lessons from "ancient" researches

子曰、温故而知新、可以為師矣

If we can keep the old traditions alive and acquire new knowledge, we will be able to become teachers.

and 8, while from (btt \bar{t}) we get 1, 8, 10, 10, and 27. In a similar way, meson singlets and octets can an isotopic doublet (u, d) with respectively. The anti-triplet \bar{t} is opposite signs of the charges. ry among the members of the xact eightfold way. while a mass

and b⁰ discussed above, we would take the weak current to be $i(\bar{b}^{0} \cos \theta + \bar{u}^{0} \sin \theta) \gamma_{\alpha}(1 + \gamma_{5}) \bar{s}$ + $i(\bar{u}^{0} \cos \theta - \bar{b}^{0} \sin \theta) \gamma_{\alpha}(1 + \gamma_{5}) \bar{d}$. The part with namely i $\bar{p} \gamma_{\alpha} (1 + \gamma_{5}) (n \cos \theta + \Lambda s)$ in the quark scheme the expressio

 $i \bar{u} \gamma_{\alpha} (1 + \gamma_5) (d \cos Q \cup Grk \mod d)$

ber $n_{t} - n_{\bar{t}}$ would be zero for all known baryons and mesons. The most interesting example of such a model is one in which the triplet has spin $\frac{1}{2}$ and z = -1, so that the four particles d⁻, s⁻, u⁰ and b⁰ exhibit a parallel with the leptons.

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $u^{\frac{2}{3}}$, $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be

CERN-TH-401 (1964)

AN SU, MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BREAKING

CERN LIBRARIES, GENEVA quark model

G.Zweig *)

CERN - Goneva

In general, we would expect that baryons are built not only from the product of three aces, AAA, but also from $\overline{A}AAAA$, $\overline{A}\overline{A}AAAAA$, ctc., where \overline{A} denotes an anti-ace. Similarly, mesons could be formed from $\overline{A}A$, $\overline{A}\overline{A}AA$ etc. For the low mass mesons and baryons we will assume the simplest possibilities, $\overline{A}A$ and AAA, that is, "deuces and treys".

VOLUME 38, NUMBER 5

PHYSICAL REVIEW LETTERS

31 JANUARY 1977

$\Lambda(uds)\Lambda(uds) >> H(uuddss)$ hexaquark Perhaps a Stable Dihyperon*

R. L. Jaffe†

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, and Department of Physics and Laboratory of Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 1 November 1976)

In the quark bag model, the same gluon-exchange forces which make the proton lighter than the $\Delta(1236)$ bind six quarks to form a stable, flavor-singlet (with strangeness of -2) $J^P = 0^+$ dihyperon (H) at 2150 MeV. Another isosinglet dihyperon (H*) with $J^P = 1^+$ at 2335 MeV should appear as a bump in $\Lambda\Lambda$ invariant-mass plots. Production and decay systematics of the H are discussed.

e of the most interesting candidates for a bound : is the H dibaryon, a bound state of two A's. ugh Jaffe's original calculation [2] and subnt work [3] indicate a gain in hyperfine interi energy by recoupling color and spins in the tark system over the two- Λ system, a lattice calculation [4] indicates that the H is unbound well above the $\Lambda\Lambda$ threshold. Furthermore, igh hyperfine binding calculations [3] indicate ivity of the hyperfine energy to flavor-SU(3) letry breaking, the lattice results are insensitive : strange quark mass and SU(3) breaking [4]. has no possibility of a quark exchange force in the lowest decay shannel FN [6]. If this five quark system breaks up into an F and a nucleon, there is no possible quark exchange between the two hadrons without flavor exchange and therefore is diagonal PCS matrix element of the one gluon exchanges interactories. tion that could give rise to a short range repulsion.

Anticharmed baryons were suggested as good candidates for possible bound exotics at the 1980 baryon conference [7]. However, the nonstrange anticharmed baryon was not bound by the hyperfine interaction and the strange anticharmed baryon was very remote from experiment and not pursued seri

quarks, Gell-Mann comments that "It is amusing that the lowest baryon configuration (QQQ) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(Q\overline{Q})$ similarly gives just 1 and 8." In recent years attention has focused on developing a quark dynamics consistent with the absence of free quarks or other states of nonzero triality. The apparent spectroscopic absence of multiquark hadrons $(Q^2\overline{Q}^2$ mesons, $Q^4\overline{Q}$ baryons, etc.) has remained essentially where Gell-Mann left it.⁴ Indeed, it seems foolish to attempt an explanation of the absence of exotics without at least some Surprisingly, we find that it is possible to accommodate $Q^2 \overline{Q}^2$ mesons relatively comfortably within the restrictions imposed by experimental meson spectroscopy. We do not claim to resolve the problem by elevating unwanted multiquark states to very high masses. On the contrary, we will attempt to identify the lowest $Q^2 \overline{Q}^2$ multiplet, a $J^P = 0^+$ nonet, with some of the known 0^+ mesons $[\epsilon(700), S^*(993), \delta(976), \kappa(?)]$. The masses and decay systematics of the observed 0^+ mesons support the $Q^2 \overline{Q}^2$ assignment. Other exotics (mesons not classifiable as flavor octets or singlets) and cryptoexotics (flavor singlets or octets neverthe-

PHYSICAL REVIEW D

VOLUME 25, NUMBER 9

1 MAY 1982

Do narrow heavy multiquark states exist?

J.-P. Ader Laboratoire de Physique Théorique, Université de Bordeaux, F-33170 Gradignan, France

J.-M. Richard Division de Physique Théorique, Institut de Physique Nucléaire, F-91406 Orsay, France and CERN, CH 1211 Genève 23, Switzerland

P. Taxil

Institut de Physique, Université de Neuchâtel, CH 2000 Neuchâtel, Switzerland and Centre de Physique Théorique, F-13288 Marseille, France (Received 11 August 1981)

We discuss the existence of states made of four heavy quarks in the context of potential models already used in the study of heavy mesons and baryons. We first consider the situation where the quarks have the same mass and interact through a two-body potential due to color-octet exchange. In this case, we show that for any reasonable confining potential there is no state below the threshold corresponding to the spontaneous dissociation into two mesons. We investigate in detail different possibilities of modifying this negative result. This concerns the effect of hyperfine corrections, the case of orbitally excited states, the case of unequal quark masses, and the use of the static potential derived from the bag model treated in the adiabatic approximation.

For very heavy quarks, the quark pair QQ can form a small color antitriplet object of size $(\alpha_s(m_Q)m_Q)^{-1}$ with a binding energy of order $\alpha_s^2(m_Q)m_Q$. The two heavy quarks last as an almost point-like heavy color antitriplet source with a mass of

Exotic QQqq states in QCD

Exotic QQqq states in QCD

Ancesh V Manohar ¹ C. CERN, TH-Division, CH-1211 Geneva-23, Switzerland Sta

Record Mark B: Wise 1992 Accepted Bar publication, 4 Lammary 1993 California Institute of Technology, Pasadena, CA 91125, USA

Received 11 December 1992

QCD containes stabilic **Asseptied** (OCDU) igntion A January 1998. Junit where the heavy quark, mass goes in infinity. (Oleve Q denotes a heavy quark, – a light antiquark and the stability refers only to the strong interactions.) The long range binding potential is due to one picm exchange between ground state Q-mesons, and is computed using chiral perturbation theory. For the Q QCD toorthing stable four-quark QQIq hadronicly tates unit to the stability refers mass goes to infinity. (Here Q denotes a heavy quark, \bar{q} a light antiquark and the stability refers

bound states. Thus, although one cannot conclude with certainty it to be the case, this fact does favour the picture that the η (1440) and the f_1 (1420) are mainly $K\bar{K}^*$ composites and the f_0 (1710) mainly a $K^*\bar{K}^*$ bound state, while the

change alone is strong enough to form at least deuteronlike $B\bar{B}^*$ and $B^*\bar{B}^*$ composites bound by approximately 50 MeV. Composites of $D\bar{D}^*$ and $D^*\bar{D}^*$ states bound by pion exchange alone are expected near the thresholds, while in the light meson sector one generally needs some additional short range attraction to form bound states. The quantum numbers of these states are I=0, and $J^{PC}=0^{-+}$, 1^{++} for the $P\bar{V}$ states and I=0, $J^{PC}=0^{++}, 0^{-+}, 1^{+-}$ for the $P\bar{V}$ states and I=0,

only in passing within general phenomenological models for meson-meson bound states [4-14], where pion exchange is not given special attention. Recently, after my first letter [2] Ericson and Karl [15] has also studied the

gluonium or "molecular multiquark" can be divided into two kinds, either models or models for bound states o rons. In a recent paper [2] I suggeste the latter, or "*deuteronlike meson-m* pion exchange plays a dominant rôle, important, and may explain the seen c states I suggested the acronym *deuse*

1. Introduction Hadron models ... since early days

What is the essential picture?

A variety of hadron models have been used up to now. They are very useful to calculate some physical quantities and to provide concrete pictures of hadron dynamics.

Pablo Ruiz Picasso (1881-1973)

complex (realism)

simple

1. Introduction Diquark

Meson

Diquark

color singlet

color anti-triplet/sextet

1. Introduction Diquark

Diquark

color singlet

color anti-triplet/sextet NO asymptotic state: **not** "**visible**"

 \rightarrow Is "good" diquark favored inside hadrons ?

The hadrons where we may see diquarks...

Scalar meson J^P=0⁺

(2) Charm/bottom baryon (C, B=1)

③ Exotic hadrons: mass spectrum of colorful state

(4) Double charm baryon (C=2)

The hadrons where we may see diquarks...

Scalar meson J^P=0⁺

Charm/bottom baryon (C, B=1)

③ Exotic hadrons: mass spectrum of colorful state

(4) Double charm baryon (C=2)

1. Introduction Diquarks in lattice QCD

Progress in Particle and Nuclear Physics 116 (2021) 103835

Contents lists available at ScienceDirect

ELSEVIER

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

Diquark correlations in hadron physics: Origin, impact and evidence

M.Yu. Barabanov ¹, M.A. Bedolla ², W.K. Brooks ³, G.D. Cates ⁴, C. Chen ⁵, Y. Chen ^{6,7}, E. Cisbani ⁸, M. Ding ⁹, G. Eichmann ^{10,11}, R. Ent ¹², J. Ferretti ¹³, R.W. Gothe ¹⁴, T. Horn ^{15,12}, S. Liuti ⁴, C. Mezrag ¹⁶, A. Pilloni ⁹, A.J.R. Puckett ¹⁷, C.D. Roberts ^{18,19,*}, P. Rossi ^{12,20}, G. Salmé ²¹, E. Santopinto ²², J. Segovia ^{23,19}, S.N. Syritsyn ^{24,25}, M. Takizawa ^{26,27,28}, E. Tomasi-Gustafsson ¹⁶, P. Wein ²⁹, B.B. Wojtsekhowski ¹²

See, e.g., this recent review paper to know more on diquarks.

1. Introduction "Diquark" in lattice QCD

A. Francis, P. de Forcrand, R. Lewis, K. Mlatman, JHEP05 (2022) 062

	All in $[GeV]$	$\delta E(m_{\pi}^{\mathrm{phys}})$	А	В
<u></u>	$\delta(1^+ - 0^+)_{ud}$	0.198(4)	0.202(4)	1.00(5)
"bad"-"good" diquarks mass difference	$\delta(1^+ - 0^+)_{\ell s}$	0.145(5)	0.151(7)	3.7(15)
	$\delta(1^+ - 0^+)_{ss'}$	0.118(2)	0.118(2)	

So far we have briefly reviewed how to understand hadrons by means of simple models.

more about Heavy Hadrons

more about Heavy Hadrons

Charmonium

 $C\overline{C}$

1. Introduction Charmonium

CŌ

C ... charge conjugate $(\pm) \leftarrow (-1)^{L+S}$
JPC QQ(quark and antiquark) case						
L	0		2n (n≥1)		2n-1 (n≥1)	
S	0	1	0	1	0	1
J	0	1	2n	$2n, 2n \pm 1$	2n-1	2n-2, 2n-1, 2n
Ρ	-1		-1		+1	
С	+1	-1	+1	-1	-1	+1
JPC	0-+	1	E-+	E, O	O+-	O++, E++

Note: E⁺⁻ and O⁻⁺ are *impossible* for QQ^{bar}.

$J=0,1,2,P=+1,C=(-1)^{L+S}=+1$

List of related review papers

Exotic heavy hadrons

- The new heavy mesons: A status report: E. S. Swanson, Phys. Rep. 429, 243 (2006)
- Charmonium: M. B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008)
- Heavy quarkonium: progress, puzzles, and opportunities: N. Brambilla et al., Eur. Phys. J. C71, 1534 (2011)
- QCD and strongly coupled gauge theories: challenges and future perspectives: N. Brambilla et al., Eur. Phys. J. C74, 2981 (2014)
- The hidden charm pentaquark and tetraquark states: H.-X Chen, W. Chen, X. Liu, S.-L. Zhu, Phys. Rep. 639, 1 (2016)
- Exotic hadrons with heavy flavors: X, Y, Z, and related states: A. Hosaka, T. lijima, K. Miyabayashi, Y. Sakai, S. Yasui, PTEP 2016, 062C01 (2016)
- Heavy-Quark QCD Exotica:
 R. F. Lebed, R. E. Mitchel, E. S. Swanson, Prog. Part. Nucl. Phys. 93, 143 (2017)
- Multiquark resonances: A. Esposito, A. Pilloni, A. D. Plolsa, Phys. Rep. 668, 1 (2017)
- Exotics: Heavy pentaquarks and tetraquarks: A. Ali, J. S. Lange, S. Stone, Prog. Part. Nucl. Phys. 97, 123 (2017)
- Nonstandard heavy mesons and baryons: Experimental evidence: S.L. Olsen, T. Skwamick, D. Zieminska, Rev. Mod. Phys. 90, 015003 (2018)
- Hadronic molecules:
 F.-G. Guo, C. Hanhart, U.-G. Meissner, Q. Qang, Q. Zhao, B.-S. Zou, Rev. Mod. Phys. 90, 015004 (2018)
- Pentaquark and Tetraquark States: Y.-R. Liu, H.-Z. Chen, W. Chen, Prog. Part. Nucl. Phys. 107, 237 (2019)
- The XYZ states: experimental and theoretical status and perspectives: N. Brambilla, et al., Phys. Rep. 873 (2020) 1
- Heavy hadronic molecules with pion exchange and quark core couplings: a guide for practitionersion
 Y. Yamaguchi, et al., J. Phys. G: Nucl. Part. Phys. 47 (2020) 053001

List of related review papers

Exotic hadrons from heavy ion collisions

• Exotic hadrons from heavy ion collisions: S. Cho et al. [ExHIC collaboration], Prog. Part. Nucl. Phys. 95, 279 (2017)

Heavy hadrons in nuclear matter

- Heavy hadrons in nuclear matter: A. Hosaka, T. Hyodo, K. Sudoh, Y. Yamaguchi, S. Yasui, Prog. Part. Nucl. Phys. 96, 88 (2017)
- Nuclear-bound quarkonia and heavy-flavor hadrons: G. Krein, A.W. Thomas, K. Tushima,, Prog. Part. Nucl. Phys. 100, 161 (2018)

Recommended text books (hadron phenomenology)

QUANTUM FIELD THEORY

Claude Itzykson and Jean-Bernard Zuber Atushi Hosaka Diroshi Toki AND CHIRAL SYMMETRY.

Lecture Notes in Physics \$30

Stefan Scherer Matthias R. Schindler

A Primer for Chiral Perturbation Theory

2 Springer

Lecture Notes in Physics 949

Claude Amsler

The Quark Structure of Hadrons

An Introduction to the Phenomenology and Spectroscopy

Deringer

Do you have questions?

